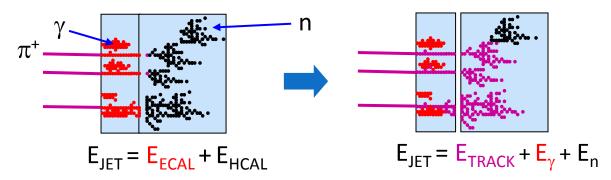


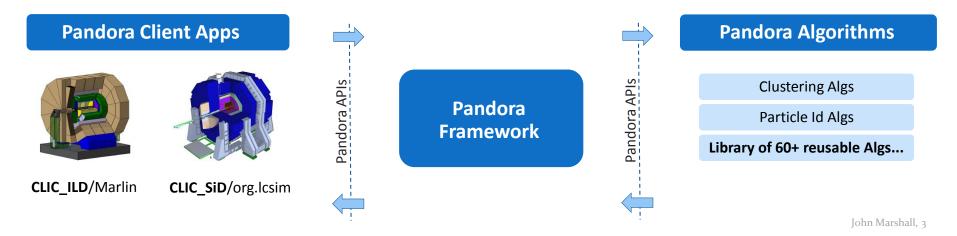
J.S. Marshall A. Muennich, M.A. Thomson

CLIC CDR Review, Manchester, October 19 2011


John Marshall, 1

Overview

- The particle flow paradigm.
- Introduction to Pandora particle flow algorithms.
- Technical performance study:
 - Jet energy resolution as a function of jet energy and angle,
 - Influence of timing cuts on jet energy resolution.
- Physics performance study:
 - W energy and mass reconstruction,
 - > W and Z separation,
 - Separation of gaugino pair production final states.

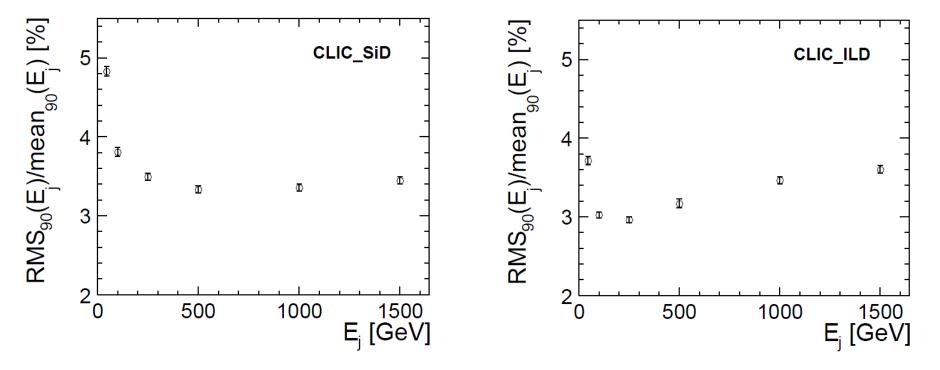


Particle Flow Calorimetry

- Measure charged particle energies (60% of jet) in tracker.
- Measure photon energies (30%) in ECAL, $\sigma E/E < 20\%/\sqrt{E(GeV)}$
- Measure only neutral hadron energies (10%) in HCAL.

Reconstruction implemented in Pandora, allowing reuse of same particle flow algorithms for ILD/SiD:

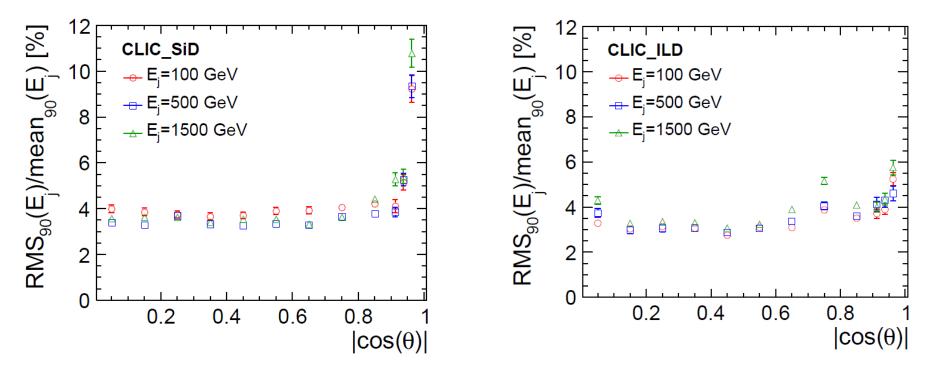
Technical Study


- Particle flow performance has been assessed using fully simulated and reconstructed events with Zs at different energies (91GeV to 3TeV) decaying at rest into light quarks.
- Backgrounds are not included and no jet reconstruction is carried out. The full energy deposited in the detector, E_{jj}, is analysed to avoid any bias from jet reconstruction.
- Performance is evaluated by examining resolution of the jet energy, E_i :

$$\frac{\mathrm{RMS}_{90}(E_j)}{\mathrm{mean}_{90}(E_j)} = \frac{\mathrm{RMS}_{90}(E_{jj})}{\mathrm{mean}_{90}(E_{jj})}\sqrt{2}$$

• $RMS_{90}(E_{ij})$ and mean₉₀(E_{ij}) are calculated from the reconstructed total energy distribution.

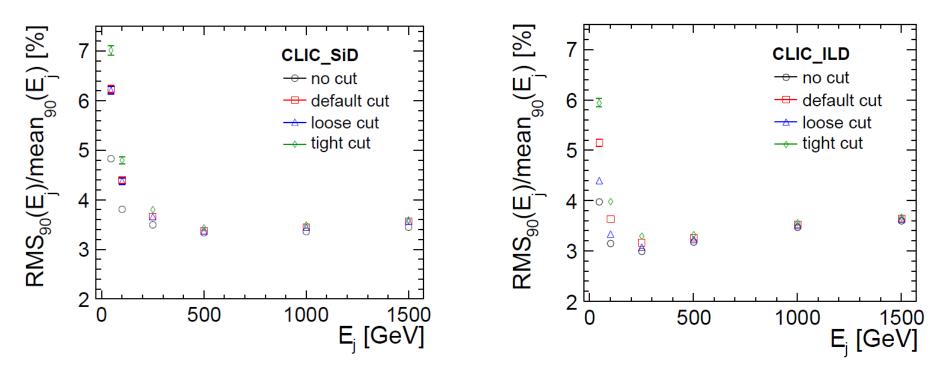
Resolution vs. Jet Energy


Barrel region $|\cos \theta| < 0.7$, no background, no jet reconstruction:

- At lower energies, CLIC_ILD benefits from its larger radius.
- At higher energies, particle separation becomes more difficult; confusion term dominates energy resolution; particle flow can become energy flow. Both detectors show similar performance.

Resolution vs. Angle

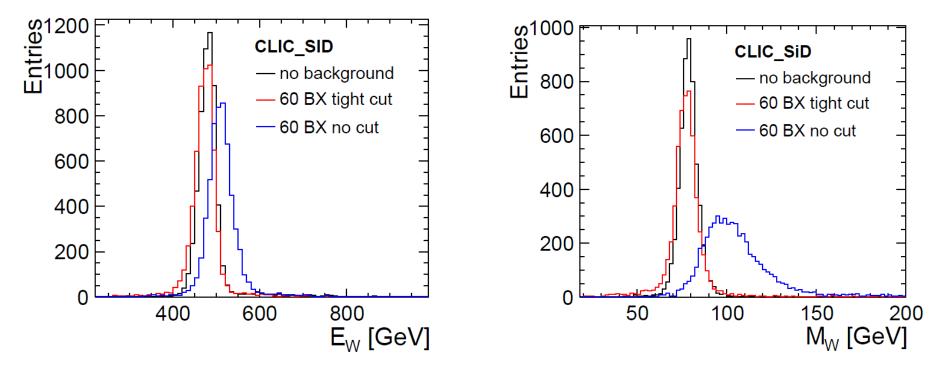
No background, no jet reconstruction:



- Resolution for CLIC_SiD is worse in the forward region, due to reduced angular coverage. There is no HCAL coverage below θ = 15.5°.
- Resolution for CLIC_ILD dips in barrel/endcap overlap region, due to gap between ECAL barrel and endcap. Leakage effects due to this gap are more pronounced at higher energies.

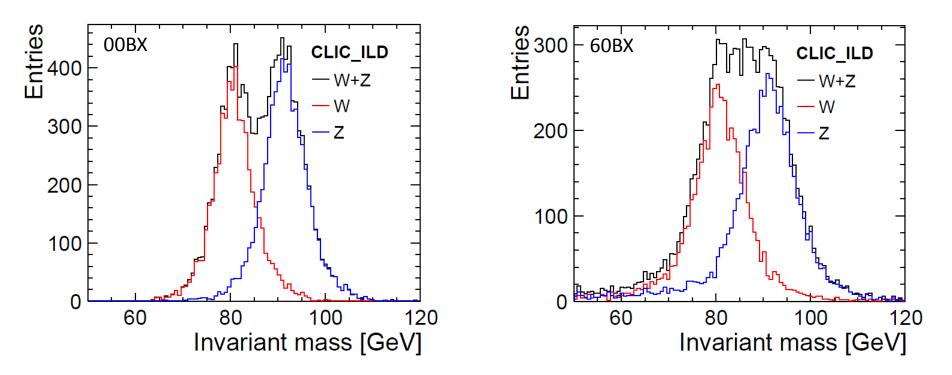
Timing Cuts

No background, no jet reconstruction:

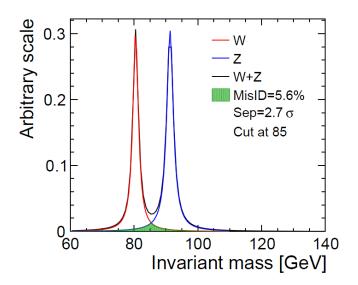

- Impact of CLICPfoSelector timing cuts on the physics event is studied by applying the cuts without overlaying any background.
- Whilst timing cuts result in degradation of jet energy resolution for low energy jets, the impact is small for jets above 500GeV.

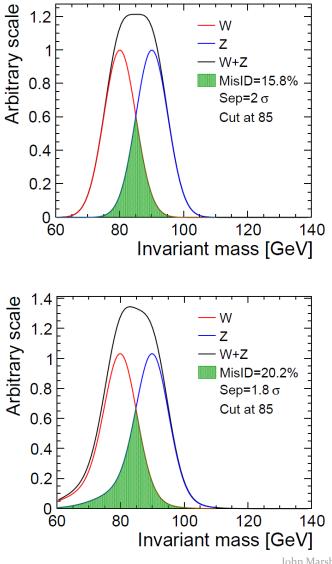
PFA Physics Performance

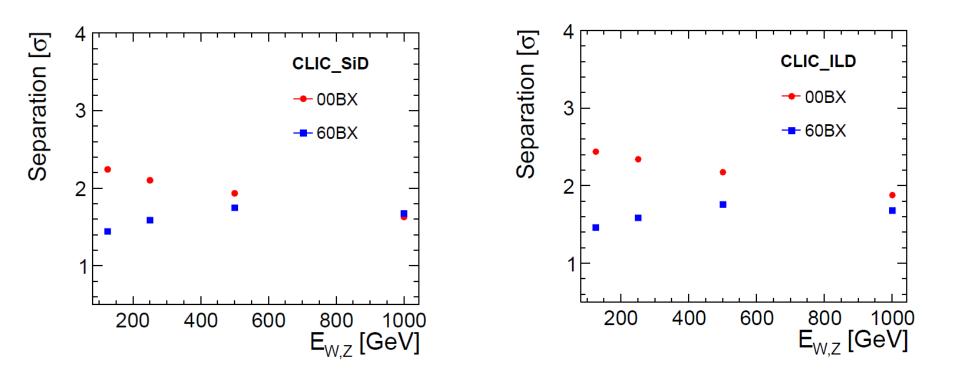
- Study of PFA physics performance carried out by A. Muennich. Event sample contains two Ws, one decaying into muon and neutrino, the other decaying into quarks:
 - $e^+e^- \rightarrow WW \rightarrow \mu \nu qq$
 - W energies: 125, 250, 500 and 1000GeV
 - Each energy available without background and with 60BX $\gamma\gamma$ \rightarrow hadrons background.
- Reconstruction was performed in two steps:
 - 1. Lepton removal. Muon and every particle around it within tight cone removed, leaving only hadronic decaying *W* in the event.
 - 2. Jet reconstruction. Without background, ee_kt algorithm used. In presence of background, kt algorithm performed best. Algorithms used in exclusive mode, forcing event into two jets.
- The analysis used PFOs passing tight timing cuts (found minimal performance difference between timing cuts). Results are shown for jets in the region $|\cos \theta| < 0.9$


W Reconstruction

• Energy and mass distributions for the reconstructed *W*, with energy of 500GeV:

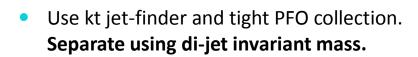

- Without background, the energy resolution is comparable to that obtained in the technical study, without jet reconstruction.
- With background, and without timing cuts, many background particles remain in the event and are reconstructed as part of the jet, shifting the energy and mass distributions to higher values.

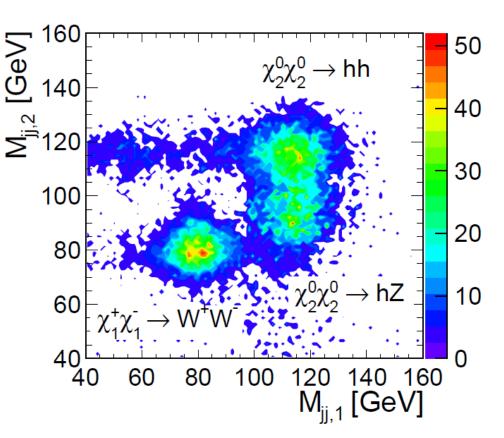

- One of the goals of PFA and fine granularity calorimetry is separation of W and Z particles.
- To study this separation, used W samples already described and samples of $e^+e^- \rightarrow ZZ \rightarrow vvqq$
- Mass distributions of the reconstructed W and Z for CLIC_ILD at $E_{W/Z}$ = 500GeV:


• Without background, the two peaks remain clearly separated. With 60BX, see significant overlap.

- Separation calculated by applying optimal cut, minimising number of misidentified events.
- For ideal Gaussian distributions, misidentification of 15.8% corresponds to 2σ separation.
- If tails present in distribution, separation drops below 2σ even if main peaks remain 2σ apart.
- Obtainable separation limited by natural width of W and Z to identification efficiency of 94%.

• Separation between W and Z peaks with no background and with 60BX of background:

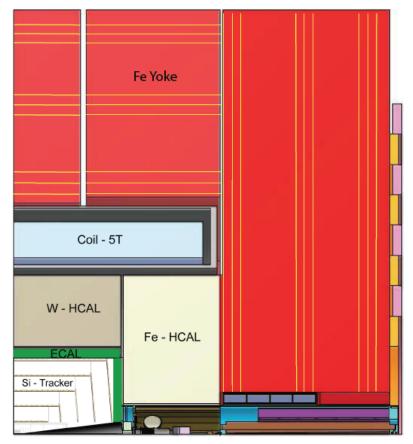


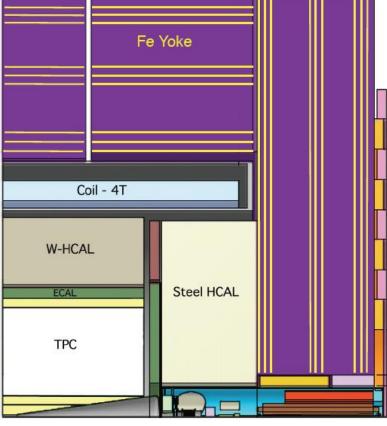

Gaugino Pair Production

- Test particle flow reconstruction of boosted low mass (EW scale) states in presence of background: $m(\tilde{\chi}_1^0) = 340 \,\text{GeV}$ $m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^+) \approx 643 \,\text{GeV}$
- Pair production and decay:

 $\begin{array}{l} e^+e^- \rightarrow ~\tilde{\chi}_1^+~\tilde{\chi}_1^- \rightarrow ~\tilde{\chi}_1^0~\tilde{\chi}_1^0 W^+ W^- \\ e^+e^- \rightarrow ~\tilde{\chi}_2^0~\tilde{\chi}_2^0 \rightarrow hh~\tilde{\chi}_1^0~\tilde{\chi}_1^0 \quad \textbf{82 \%} \\ e^+e^- \rightarrow ~\tilde{\chi}_2^0~\tilde{\chi}_2^0 \rightarrow Zh~\tilde{\chi}_1^0~\tilde{\chi}_1^0 \quad \textbf{17 \%} \end{array}$

 Largest BR decay has same topology for all final states:


Summary


- Technical performance study shows that PandoraPFA provides impressive jet energy resolution at CLIC. The behaviour of the reconstruction is well-understood.
- Physics performance study reveals that it is possible to separate final states (with identical topologies) based on invariant mass reconstruction.
- Background from $\gamma\gamma$ \rightarrow hadrons can be addressed using timing cuts at PFO level.
- Influence of background on reconstructed energy and mass resolutions is evident, but decreases at higher jet energies.
- CLIC_ILD and CLIC_SiD show similar performance in the presence of background.

Detector Concepts

CLIC_SiD

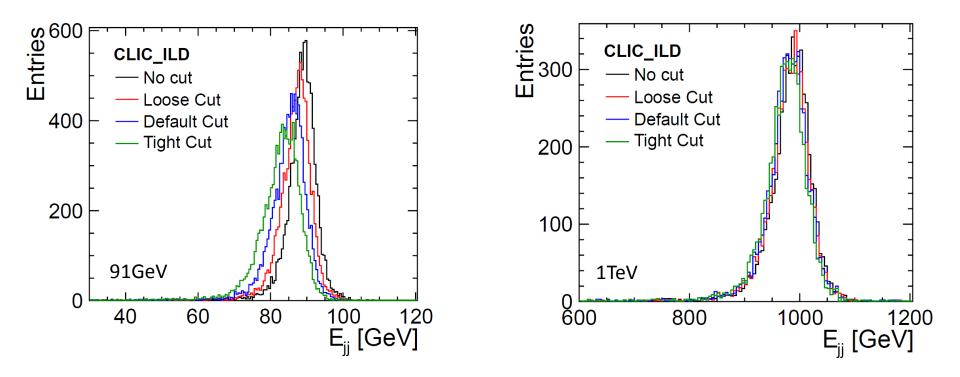
CLIC_ILD

Default PFO Selection

Region	<i>p</i> _T range	Time cut		
Photons				
Central	$0.75\mathrm{GeV} \le \rho_T < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) \le 0.975$	$0\mathrm{GeV} \leq p_\mathrm{T} < 0.75\mathrm{GeV}$	<i>t</i> < 1.0 ns		
Forward	$0.75\mathrm{GeV} \le \rho_T < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) > 0.975$	$0\mathrm{GeV} \le p_\mathrm{T} < 0.75\mathrm{GeV}$	<i>t</i> < 1.0 ns		
Neutral hadrons				
Central	$0.75\mathrm{GeV} \le \rho_T < 8.0\mathrm{GeV}$	<i>t</i> < 2.5 ns		
$ \cos(heta) \le 0.975$	$0{ m GeV} \le {\it p}_{ m T} < 0.75{ m GeV}$	<i>t</i> < 1.5 ns		
Forward	$0.75\mathrm{GeV} \le \rho_T < 8.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) > 0.975$	$0\mathrm{GeV} \leq p_\mathrm{T} < 0.75\mathrm{GeV}$	<i>t</i> < 1.0 ns		
Charged particles				
All	$0.75\mathrm{GeV} \le \rho_T < 4.0\mathrm{GeV}$	<i>t</i> < 3.0 ns		
	$0\mathrm{GeV} \leq p_\mathrm{T} < 0.75\mathrm{GeV}$	<i>t</i> < 1.5 ns		
Track only				
Require $p_{\rm T}$ > 0.5 GeV and $t_{\rm ECAL}$ < 10 ns				

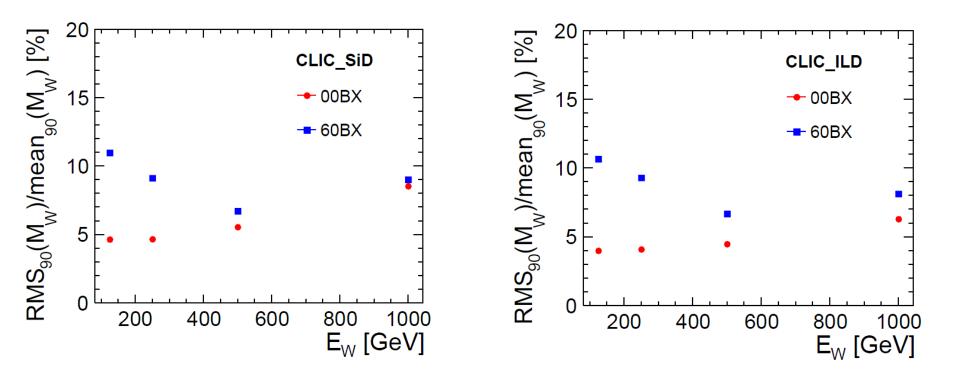
Loose PFO Selection

Region	<i>p</i> _T range	Time cut		
Photons				
Central	$0.75\mathrm{GeV} \le p_T < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) \le 0.975$	$0{\rm GeV} \le \rho_T < 0.75{\rm GeV}$	<i>t</i> < 2.0 ns		
Forward	$0.75\mathrm{GeV} \le p_T < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) > 0.975$	$0{\rm GeV} \le \rho_T < 0.75{\rm GeV}$	<i>t</i> < 1.0 ns		
Neutral hadrons				
Central	$0.75\mathrm{GeV} \le p_T < 8.0\mathrm{GeV}$	<i>t</i> < 2.5 ns		
$ \cos(heta) \le 0.975$	$0{\rm GeV} \le \rho_T < 0.75{\rm GeV}$	<i>t</i> < 1.5 ns		
Forward	$0.75\mathrm{GeV} \le p_T < 8.0\mathrm{GeV}$	<i>t</i> < 2.5 ns		
$ \cos(heta) > 0.975$	$0{\rm GeV} \le \rho_T < 0.75{\rm GeV}$	<i>t</i> < 1.5 ns		
Charged particles				
All	$0.75\mathrm{GeV} \le p_T < 4.0\mathrm{GeV}$	<i>t</i> < 3.0 ns		
	$0{\rm GeV} \le \rho_T < 0.75{\rm GeV}$	<i>t</i> < 1.5 ns		
Track only				
Require $p_{\rm T} > 0.25 { m GeV}$				



Tight PFO Selection

Region	<i>p</i> _T range	Time cut		
Photons				
Central	$1.0\mathrm{GeV} \le p_\mathrm{T} < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) \le 0.95$	$0.2\mathrm{GeV} \le p_\mathrm{T} < 1.0\mathrm{GeV}$	<i>t</i> < 1.0 ns		
Forward	$1.0\mathrm{GeV} \le p_\mathrm{T} < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
$ \cos(heta) > 0.95$	$0.2{\rm GeV} \le \rho_T < 1.0{\rm GeV}$	<i>t</i> < 1.0 ns		
Neutral hadrons				
Central	$1.0\mathrm{GeV} \le p_\mathrm{T} < 8.0\mathrm{GeV}$	<i>t</i> < 2.5 ns		
$ \cos(\theta) \le 0.95$	$0.5\mathrm{GeV} \le p_\mathrm{T} < 1.0\mathrm{GeV}$	<i>t</i> < 1.5 ns		
Forward	$1.0\mathrm{GeV} \le p_\mathrm{T} < 8.0\mathrm{GeV}$	<i>t</i> < 1.5 ns		
$ \cos(heta) > 0.95$	$0.5\mathrm{GeV} \le p_\mathrm{T} < 1.0\mathrm{GeV}$	<i>t</i> < 1.0 ns		
Charged particles				
All	$1.0\mathrm{GeV} \le p_\mathrm{T} < 4.0\mathrm{GeV}$	<i>t</i> < 2.0 ns		
	$0{ m GeV} \le p_{ m T} < 1.0{ m GeV}$	<i>t</i> < 1.0 ns		
Track only				
Require $p_{\rm T}$ > 1.0 GeV and $t_{\rm ECAL}$ < 10 ns				



Timing cuts: energy distributions

W Mass Resolution

BX	$E_{W,Z}$ [GeV]	$\sigma_m(W)/m(W)$ [%]	$\sigma_m(Z)/m(Z)$ [%]	Separation $[\sigma]$	€ [%]
00 BX	125	4.6	4.1	2.0	85
	250	4.7	4.5	2.0	85
	500	5.5	4.9	2.0	84
	1000	8.5	7.4	1.7	78
60 BX	125	11.0	10.6	1.4	69
	250	9.1	9.1	1.6	74
	500	6.7	7.0	1.7	78
	1000	9.0	8.5	1.7	76

Separation between W and Z and corresponding mass resolution for CLIC_SiD.

BX	$E_{W,Z}$ [GeV]	$\sigma_m(W)/m(W)$ [%]	$\sigma_m(Z)/m(Z)$ [%]	Separation $[\sigma]$	E [%]
00 BX	125	3.9	3.5	2.2	88
	250	4.1	3.8	2.2	89
	500	4.5	4.2	2.2	88
	1000	6.3	5.6	1.9	87
60 BX	125	11.0	10.1	1.5	70
	250	9.3	9.0	1.6	74
	500	6.7	6.6	1.8	79
	1000	8.1	7.7	1.7	77

Separation between W and Z and corresponding mass resolution for CLIC_ILD.