

Background Suppression

Mark Thomson University of Cambridge

on behalf of CLIC Physics and Detector Study

This Talk:

- Introduction
- Simulation/Reconstruction
- Backgrounds and Timing
- Jet Finding
- Beam Halo Muons
- Conclusions

Introduction

- **★** CLIC provides the potential for e^+e^- collisions up to $\sqrt{s} = 3$ TeV
 - But machine environment is much more challenging than ILC
 - Background levels are high
 - 0.5 ns bunch-structure
 integrate over multiple bunch crossings of background
 - One of the main aims of the CDR was to demonstrate possibility of precision physics measurements in this environment
 - A second aim was to understand the requirements for the detector readout – guide future R&D direction
- **★** Both aims require detailed simulation and reconstruction
 - Including pile-up from background is essential
 - Significant software challenge
 - Fortunately, not starting from scratch
 - builds on existing work developed for the ILC

Simulation and Reconstruction

Mark Thomson

Simulation

- **★** Both ILD and SiD have developed full GEANT 4 based detector simulations:
 - Mokka (ILD) : already quite detailed, e.g. realistic gaps between detector elements for support/services
 - SLIC (SiD): fairly detailed and very flexible
- **★** Extensively validated/used for the ILD and SiD LoI documents
- **★** For CDR defined two GEANT 4 detector models: CLIC_ILD and CLIC_SiD

			CLIC_ILD	CLIC_SID		
Coil - 4T		Tracker	TPC , r = 1.8 m	Silicon, r = 1.2 m	Coil - 5T	·
W-HCAL		B-field	4 T	5 T	W - HCAI	
ECAL Steel	HCAL	ECAL	SiW	SiW	ECAL	Fe - HCAL
ТРС		HCAL barrel	W-Scint	W-Scint	Si - Tracker	
		HCAL endcap	Steel-Scint	Steel-Scint		

- **★** Main modifications to existing detector models
 - Thicker HCAL + Tungsten absorber for HCAL barrel
 - Design of forward region + location of inner detectors

Reconstruction

★ All studies use full event reconstruction

- Highly non-trivial exercise
 - Need full reconstruction chain developed for ILC (twice)
 - Needs to be able to cope with CLIC environment
 - Ideally would have common framework for CLIC_ILD and CLIC_SiD
 - but only had common data format (nevertheless important)

Reconstruction

★ All studies use full event reconstruction

- Highly non-trivial exercise
 - Need full reconstruction chain developed for ILC (twice)
 - Needs to be able to cope with CLIC environment
 - Ideally would have common framework for CLIC_ILD and CLIC_SiD
 - but only had common data format (nevertheless important)

Software Challenges

Major effort to develop and validate software for CLIC CDR + two parallel software frameworks

- ★ A number of significant challenges
 - Tracking work in high occupancy environment
 - High hit multiplicities in calorimeters
 - Reconstruction times/memory footprint
 - GRID production with background overlay

Backgrounds and Timing Requirements

Mark Thomson

CLIC Review, Manchester, October 2011

Background from γγ→ hadrons

cic

- ★ Pair Background largely affects very low angle region
- **★** Background in calorimeters, central tracker dominated by $\gamma\gamma \rightarrow$ hadrons "mini-jets"
- * At 3 TeV, average 3.2 events per BX (approximately 5 tracks per event)
- ★ For entire bunch-train (312 BXs)
 - 5000 tracks (mean momentum 1.5 GeV) giving total track momentum : 7.3 TeV
 - Total calorimetric energy (ECAL + HCAL) : 19 TeV

Backgrounds in the Calorimeters

Calorimeter backgrounds per bunch-crossing are manageable, ~ 60 GeV
 Hence want to integrate over as few as possible BXs

***** Tight timing requirements – O(ns) !

0.5 ns

Calorimeter Timing

- ★ But at ns timescale there are issues...
- ★ Can't just "assume" arbitrarily short time-stamping capability
- ★ Time needed to accumulate all calorimetric energy (due to low energy particles, nuclear break-up etc.) significant compared to 0.5 ns Bx
- *** HCAL resolution** depends on time window

CLIC Timing cont.

- ★ Tension between calorimeter integration time and desire to minimize number of BXs of $\gamma\gamma \rightarrow$ hadrons background
 - e.g di-jet mass resolution from isolated $W \rightarrow q \overline{q}$ decays

CLIC Timing cont.

***** Timing Requirements:

•

- Integrate over > 20 BXs to accumulate calorimetric signals
- integrate over < 5 BXs for acceptable $\gamma\gamma \rightarrow$ hadrons backgrounds

- high granularity calorimetry
- sophisticated reconstruction

CLIC Timing Strategy

- Based on trigger-free readout of detector hits all with time-stamps
 assume multi-hit capability of 5 hits per bunch train
- **★** Assume can identify t0 of physics event in offline trigger/event filter
 - define "reconstruction" window around t0

Hits within window passed to track and particle flow reconstruction

Subdetector	Reco Window	Hit Resolution
ECAL	10 ns	1 ns
HCAL Endcap	10 ns	1 ns
HCAL Barrel	100 ns	1 ns
Silicon Detectors	10 ns	10/√12
TPC (CLIC_ILD)	Entire train	n/a

Reconstruction in Time

***** Additional background rejection still required post reconstruction

*TPC readout integrates over whole train – only 60 BXs used due to limitations in heritage (LEP) tracking software

Mark Thomson

CLIC Review, Manchester, October 2011

Reconstruction in Time

- ★ After reconstruction have a list of particles (PFOs):
 - charged particles mostly matched to clusters
 - photons EM clusters
 - neutral hadrons clusters
- ★ High granularity calorimeter even low energy clusters have many hits
 - calculate energy weighted truncated mean time of each cluster
 - calo hit times corrected for time-of-flight (straight-line)
 - sub-ns resolution

- use times to reject clusters
- also can reject associated tracks
 - account for helical propagation time
- ★ Reject PFOs from background
 - e.g. neutral hadrons in Endcap

PFOSelection

★ Only apply to "low" p_T PFOs ★ Three sets of timing cuts applied in reconstruction

Loose, Default, Tight

	<u> </u>				
Table B.2	Region	$p_{\rm T}$ range	time cut		
	Photons				
	central	$0.75 { m GeV} \le p_{ m T} < 4.0 { m GeV}$	t < 2.0 ns		
	$\cos\theta \leq 0.975$	$0 \text{ GeV} \le p_{\mathrm{T}} < 0.75 \text{ GeV}$	t < 1.0 ns		
	forward	$0.75 { m GeV} \le p_{ m T} < 4.0 { m GeV}$	t < 2.0 ns		
	$\cos \theta > 0.975$	$0 \text{ GeV} \le p_{\mathrm{T}} < 0.75 \text{ GeV}$	t < 1.0 ns		
	neutral hadrons				
	central	$0.75 { m GeV} \le p_{ m T} < 8.0 { m GeV}$	t < 2.5 ns		
	$\cos\theta \leq 0.975$	$0 \text{ GeV} \le p_{ ext{T}} < 0.75 \text{ GeV}$	t < 1.5 ns		
	forward	$0.75 { m GeV} \le p_{ m T} < 8.0 { m GeV}$	t < 2.0 ns		
	$\cos \theta > 0.975$	$0 \text{ GeV} \le p_{\mathrm{T}} < 0.75 \text{ GeV}$	t < 1.0 ns		
	charged particles				
	all	$0.75 \text{ GeV} \le p_{\mathrm{T}} < 4.0 \text{ GeV}$	t < 3.0 ns		
		$0 \text{ GeV} \le p_{\mathrm{T}} < 0.75 \text{ GeV}$	t < 1.5 ns		

CLIC Review, Manchester, October 2011

Impact of Timing Cuts

1.2 TeV

		1	
Cut	$\gamma\gamma \rightarrow hadrons$	500 GeV di-jet	
	Energy	Energy	energy
	(GeV)	(GeV)	loss
No cut	1210	500.2	0%
Loose	235	498.8	0.3%
Default	175	498.0	0.5%
Tight	85	496.1	0.8%
$p_{\rm T} > 3.0 {\rm GeV}$	160	454.2	9.2%

Table 12 1

Impact of Timing Cuts

	Table 12.	1	
Cut	$\gamma\gamma \rightarrow hadrons$	500 GeV di-jet	
	Energy	Energy	energy
	(GeV)	(GeV)	loss
No cut	1210	500.2	0%
Loose	235	498.8	0.3%
Default	175	498.0	0.5%
Tight	85	496.1	0.8%
$p_{\rm T} > 3.0 {\rm GeV}$	160	454.2	9.2%

T.I.I. 40 4

★ Reject 93 % of background energy and < 1% of physics event ■ much more effective than simple p_T cut

Forward Events

 $W^+W^- \rightarrow q\overline{q}q\overline{q}$

★ Also effective in forward region
 ■ qualitative example for hard case,
 3 TeV W⁺W⁻ → qqqqq

CLIC Review, Manchester, October 2011

Jet Finding

Mark Thomson

CLIC Review, Manchester, October 2011

Jet Finding at CLIC

★ At LEP, preferred jet-finding algorithm: Durham k_T
 all particles in event clustered into the jets

not appropriate for CLIC

★ Events at CLIC

- significant background from forward-peaked $\gamma\gamma \rightarrow$ hadrons
- events are often boosted along beam axis (beamstrahlung)
- "hadron collider" type algorithms more appropriate

★ Jet finding at CLIC

- studied for benchmark physics analyses (FASTJET package)
- preferred option "k_T" with distance measure $\Delta R^2 = \Delta \eta^2 + \Delta \phi^2$
 - invariant under longitudinal boosts
- particles either combined with existing jet or beam axis
 - reduces sensitivity to $\gamma\gamma \rightarrow$ hadrons

Jet Finding at CLIC

★ Using Durham k_T à la LEP
 ■ all particles clustered

 timing cuts are effective

Jet Finding at CLIC

★ e.g. $e^+e^- \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow q \overline{q} \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$ ■ two jets + missing energy

- ★ "hadron collider" k_T : R = 0.7
 - much of background clustered with beam axis
 - timing cuts do less work
 - relative impact of timing and jet-finding depends on event topology

★ Two "weapons" against background: timing cuts + jet finding

Does it all work ?

Fig. 12.9

- ★ Aim was to show that can make precise measurements in CLIC environment
 - topic of talk by Frank Simon (quantitative results)

★ Here - just a taster (a particularly challenging case)

★ Take a close look at the reconstructed W mass in $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+W^-$

- here the timing cuts do most of the work...
- jet finding alone gives broad peak at 100 GeV
- with timing cuts not too far from ideal no background case

Beam Halo Muons

Mark Thomson

CLIC Review, Manchester, October 2011

Beam Halo Muons

★ Most work for CDR concentrated on impact of $\gamma\gamma \rightarrow$ hadrons

also looked at beam halo muons

Simulated events with entire bunch train of beam halo muons
 for study assumed a bad case: 5 muons/BX crossing detector

For this very conservative level of background:

Software Mitigation

- ★ Three steps of background reduction
 - Initial reconstruction window of 10 ns (50 ns in HCAL barrel)
 - Timing cuts at cluster level (TightPFOSelection)
 - Build in beam halo muon rejection into particle flow reconstruction
- ★ For very conservative assumption of 5 muons per BX

★ Background rejection very effective: due to high granularity of calorimeters

Impact on Physics

- **★** Tested in by looking at W reconstruction in $W^+W^- \rightarrow q \overline{q} \mu \nu$
 - Sample of 500 GeV hadronic W decays
 - Again very conservative assumptions (5 muons/BX)
- ★ Two effects observed
 - Extra energy from clusters from beam halo muons: 30 GeV
 - Energy of reconstructed jets also biased "pick" up hits from muons: 30 GeV

Impact on W Reconstruction

Conclude: a beam halo muon background of 1 muon/BX is acceptable
 Machine background likely to be much lower than this

Conclusions

★ Understanding of impact of background studied in detail

- Full GEANT 4 simulation + full reconstruction
- Developed strategy to mitigate effects of background
 - requires high granularity in space and time
- Defines detector timing requirements guide future R&D

★ I believe we have achieved the initial goal

 Demonstrated ability to perform high precision physics measurements in CLIC machine environment

[More in Frank Simon's talk on physics benchmarks]