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«  CLIC provides the potential for e+e- collisions up to √s = 3 TeV  
§  But machine environment is much more challenging than ILC  

•  Background levels are high 
•  0.5 ns bunch-structure ➡ integrate over multiple bunch  
     crossings of background 
 

§  One of the main aims of the CDR was to demonstrate possibility 
      of precision physics measurements in this environment 

§   A second aim was to understand the requirements for the 
      detector readout – guide future R&D direction 

«  Both aims require detailed simulation and reconstruction   
§   Including pile-up from background is essential  
§   Significant software challenge 
§   Fortunately, not starting from scratch 

•  builds on existing work developed for the ILC 
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Simulation 

«  For CDR defined two GEANT 4 detector models:  CLIC_ILD and CLIC_SiD 

CLIC_ILD CLIC_SiD 
Tracker TPC,  r = 1.8 m Silicon,  r = 1.2 m 
B-field 4 T 5 T 
ECAL SiW SiW 
HCAL barrel W-Scint W-Scint 
HCAL endcap Steel-Scint Steel-Scint 

«  Both ILD and SiD have developed full GEANT 4 based detector simulations: 
§  Mokka (ILD) : already quite detailed, e.g. realistic gaps between detector 
                            elements for support/services 
§  SLIC (SiD): fairly detailed and very flexible 
 

«  Extensively validated/used for the ILD and SiD LoI documents 
Fe Yoke Fe Yoke

«  Main modifications to existing detector models 
§  Thicker HCAL + Tungsten absorber for HCAL barrel 
§  Design of forward region + location of inner detectors 



Reconstruction 

Mark Thomson CLIC Review, Manchester, October 2011 5 

«  All studies use full event reconstruction  
§  Highly non-trivial exercise 

•  Need full reconstruction chain - developed for ILC (twice) 
•  Needs to be able to cope with CLIC environment  
•  Ideally would have common framework for CLIC_ILD and CLIC_SiD 

•  but only had common data format (nevertheless important) 

« ILC LoIs: 
Simulation: 

Tracking: 

Particle Flow: 

Vertex Reco.: 

Mokka SLIC 

TPC Tracking Silicon Tracking 

PandoraPFA 

LCFIVertex 

IowaPFA 

ILD:Mokka/Marlin SiD:SLIC/org.lcsim 

JAVA 
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Simulation: 

Tracking: 

Particle Flow: 

Vertex Reco.: 

Mokka SLIC 

TPC Tracking Silicon Tracking 

PandoraPFA 

LCFIVertex 

SLICPandora 

Overlay: 

MarlinPandora 

Overlay Overlay 

«  All studies use full event reconstruction  
§  Highly non-trivial exercise 

•  Need full reconstruction chain - developed for ILC (twice) 
•  Needs to be able to cope with CLIC environment  
•  Ideally would have common framework for CLIC_ILD and CLIC_SiD 

•  but only had common data format (nevertheless important) 

« CLIC CDR: ILD:Mokka/Marlin SiD:SLIC/org.lcsim 

JAVA 
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«  Major effort to develop and validate software for CLIC CDR  
§  + two parallel software frameworks 

«  A number of significant challenges   
§  Tracking work in high occupancy  
      environment 
§  High hit multiplicities in  
      calorimeters 
§  Reconstruction times/memory  
      footprint 
§  GRID production with background  
      overlay 

«  Despite challenges and a few remaining rough edges …  
§  All studies in CDR use full reconstruction including overlay from 
      most significant background γγ→ hadrons  

Fig. 5.9 
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Background from γγ→ hadrons 
«  Pair Background largely affects very low angle region 
«  Background in calorimeters, central tracker dominated by γγ→ hadrons “mini-jets” 
«  At 3 TeV, average 3.2 events per BX (approximately 5 tracks per event)  
«  For entire bunch-train (312 BXs) 

§  5000 tracks (mean momentum 1.5 GeV) giving total track momentum : 7.3 TeV 
§  Total calorimetric energy (ECAL + HCAL) : 19 TeV 

«  Largely low pT particles 

20 BXs 

«  Irreducible background – it is physics 

Fig. 2.3 
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Backgrounds in the Calorimeters 

Detector γγ→ hadrons  
ECAL endcaps  11 TeV 
ECAL barrel 1.5 TeV 
HCAL endcaps    6 TeV 
HCAL barrel 0.3 TeV 
Total  19 TeV 

«  Calorimeter backgrounds per bunch-train (3 TeV) 

ECAL 

«  Calorimeter backgrounds per bunch-crossing are manageable, ~ 60 GeV    
«  Hence want to integrate over as few as possible BXs  
«  Tight timing requirements – O(ns) ! 

…. …. 

0.5 ns 

Fig. 2.8 
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«  But at ns timescale there are issues… 
«  Can’t just “assume” arbitrarily short time-stamping capability 
«  Time needed to accumulate all calorimetric energy (due to low energy  
       particles, nuclear break-up etc.) significant compared to 0.5 ns Bx 
«  HCAL resolution depends on time window 
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Fig. 6.3 Fig. 6.3 
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«  Tension between calorimeter integration time and desire 
      to minimize number of BXs of γγ  → hadrons background 
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§  e.g di-jet mass resolution from isolated   
                    decays 

W→ qq

< 10 BX 
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«  Similar conclusions for reconstruction of high mass states  
§  e.g. reconstructed di-jet mass in  e+e

− → H
0
A

0 → bbbb

But < 2.5 ns not long  
enough for calorimetry  
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Fig. 2.10 

< 10 BX 



Mark Thomson CLIC Review, Manchester, October 2011 14 

«  Timing Requirements:  
§  integrate over > 20 BXs to accumulate calorimetric signals 
§  integrate over <   5 BXs for acceptable γγ  → hadrons backgrounds  
§  … 

«  The Solution - a combination of: 
§  excellent time resolution  
§  high granularity calorimetry 
§  sophisticated reconstruction 
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CLIC Timing Strategy 
«  Based on trigger-free readout of detector hits all with time-stamps 

§  assume multi-hit capability of 5 hits per bunch train 
«  Assume can identify t0 of physics event in offline trigger/event filter 

§  define “reconstruction” window around t0 

…. …. 

«  Hits within window passed to track and particle flow reconstruction 

Subdetector Reco Window Hit Resolution 
ECAL 10 ns 1 ns 
HCAL Endcap 10 ns 1 ns 
HCAL Barrel 100 ns 1 ns 
Silicon Detectors 10 ns 10/√12 
TPC (CLIC_ILD) Entire train n/a 

Sufficient calorimeter 
  integration window 

CLIC hardware  
requirements 
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PandoraPFA 

Tracking 
TPC : 30 ns* 

Si trackers : 10 ns 

ECAL: 10 ns 

HCAL (End): 10 ns 

HCAL (Barrel): 100 ns 

“10 ns of tracks” 

«  Additional background rejection still required post reconstruction 

1.2 TeV 
γγ  → hadrons  

Sufficient time 
  window for 
  calorimetry 

*TPC readout integrates over whole train – only 60 BXs used due to limitations in heritage (LEP ) tracking software 

Input to reco: 



Reconstruction in Time 
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«  After reconstruction have a list of particles (PFOs): 
§  charged particles – mostly matched to clusters 
§  photons – EM clusters  
§  neutral hadrons – clusters 

tCluster 

«  High granularity calorimeter -  even low energy clusters have many hits 
§  calculate energy weighted truncated mean time of each cluster 

•  calo hit times corrected for time-of-flight (straight-line) 
•  sub-ns resolution 

§  use times to reject clusters 
§  also can reject associated tracks 

•  account for helical propagation time  
«  Reject PFOs from background  

§  e.g. neutral hadrons in Endcap 

γγ→ hadrons
Neutral hadrons 

3 TeV tt



PFOSelection 
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Table B.2 

«  Only apply to “low” pT PFOs 
«  Three sets of timing cuts applied in reconstruction 

§  Loose, Default, Tight 



Impact of Timing Cuts 
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1.2 TeV 
Table 12.1 
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85 GeV 1.2 TeV 

Impact of Timing Cuts 

Table 12.1 

«  Reject 93 % of background energy and < 1% of physics event 
§  much more effective than simple pT cut 
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Forward Events  

γγ→ hadrons

W+W− → qqqq

W+W− → qqqq + TightSelectedPFOs 

«  Also effective in forward region 
§  qualitative example for hard case, 
      3 TeV W+W− → qqqq



Jet Finding 

Mark Thomson CLIC Review, Manchester, October 2011 22 



Jet Finding at CLIC 

Mark Thomson CLIC Review, Manchester, October 2011 23 

«  At LEP, preferred jet-finding algorithm: Durham kT 

§  all particles in event clustered into the jets 
§  not appropriate for CLIC 

«  Events at CLIC  

§  significant background from forward-peaked  γγ  → hadrons 
§  events are often boosted along beam axis (beamstrahlung) 
§  “hadron collider” type algorithms more appropriate 

«  Jet finding at CLIC  

§  studied for benchmark physics analyses (FASTJET package) 
§  preferred option “kT” with distance measure 

•  invariant under longitudinal boosts                            
§  particles either combined with existing jet or beam axis 

•  reduces sensitivity to γγ  → hadrons 

∆R2 = ∆η2 + ∆φ2
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«  e.g. 

§  two jets + missing energy 
e+e− → q̃Rq̃R → qq χ̃0

1 χ̃
0
1 TIGHT 

timing 

Fig. 12.7 

«  Using Durham kT à la LEP 

§  all particles clustered 
§  timing cuts are  
     effective 
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«  e.g. 

§  two jets + missing energy 
e+e− → q̃Rq̃R → qq χ̃0

1 χ̃
0
1 TIGHT 

timing 

«  Two “weapons” against background: timing cuts + jet finding   

Fig. 12.7 
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«  “hadron collider” kT : R = 0.7 

§  much of background  
    clustered with beam axis 
§  timing cuts do less work 
§  relative impact of timing 
    and jet-finding depends  
    on event topology 
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«  Aim was to show that can make precise measurements in CLIC environment 
§  topic of talk by Frank Simon (quantitative results) 

«  Pair production and decay:  

«  Test of di-jet mass reconstruction  

82 % 

17 % 

Full Simulation with background 

«  Separate using di-jet invariant masses (test of PFA) 

Does it all work ? 

Fig. 12.9 «  Here - just a taster (a particularly challenging case) 
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Fig. 12.25 

«  Take a close look at the reconstructed W mass in  
§  here the timing cuts do most of the work… 
§  jet finding alone gives broad peak at 100 GeV 
§  with timing cuts not too far from ideal no background case  

e+e− → χ̃+1 χ̃−1 → χ̃0
1 χ̃

0
1W+W−

kT alone 

kT + PFO sel. 
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«  Simulated events with entire bunch train of beam halo muons 

§  for study assumed a bad case: 5 muons/BX crossing detector 

 Beam Halo Muons 

«  In 150 ns from start of bunchtrain: 
§  ECAL 

•   Total     =   1.5 TeV     (54k hits)        
•   Barrel   =   0.8 TeV     (18k) 
•   Endcap =   0.7 TeV     (36k) 
 

§  HCAL 
•  Total     =  10.8 TeV     (128k hits)        
•  Barrel   =    5.3 TeV     (32k)  
•  Endcap =   5.5 TeV     (96k) 
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«  Most work for CDR concentrated on impact of   
§  also looked at beam halo muons  

γγ  → hadrons  

12 TeV 

For this very conservative 
 level of background: 



«  Three steps of background reduction 
§  Initial reconstruction window of 10 ns (50 ns in HCAL barrel) 
§  Timing cuts at cluster level (TightPFOSelection) 
§  Build in beam halo muon rejection into particle flow reconstruction 

«  For very conservative assumption of 5 muons per BX  

2.2 TeV 

Software Mitigation 
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420 GeV 30 GeV 

Readout window TightPFOSelection + dedicated reco. Alg. 

«  Background rejection very effective: due to high granularity of calorimeters  



«  Tested in by looking at W reconstruction in   
§   Sample of 500 GeV hadronic W decays 
§   Again very conservative assumptions (5 muons/BX) 

 Impact on Physics 
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«  Two effects observed 
§   Extra energy from clusters from beam halo muons: 30 GeV  
§   Energy of reconstructed jets also biased “pick” up hits from muons: 30 GeV 

W+W− → qqµν

Readout window TightPFOSelection + reco. alg. 



Impact on W Reconstruction 
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muon halo (5/BX) γγ  → hadrons  muon halo (1/BX) 

«  Compare W mass reconstruction 
§  no background 
§  γγ  → hadrons  
§  5 muons per BX  (very conservative) 
§  1 muon per BX    (conservative) Worst case as pattern recognition not optimal 

«  Conclude: a beam halo muon background of 1 muon/BX is acceptable 
§  Machine background likely to be much lower than this 



Conclusions 
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«  Understanding of impact of background studied in detail 
•  Full GEANT 4 simulation + full reconstruction 
•  Developed strategy to mitigate effects of background 

§  requires high granularity in space and time 
•  Defines detector timing requirements - guide future R&D   

«  I believe we have achieved the initial goal  
•  Demonstrated ability to perform high precision physics 
     measurements in CLIC machine environment 
    [More in Frank Simon’s talk on physics benchmarks]  


