IF, Universidade de São Paulo

Componentes soft e semihard das distribuições de multiplicidade na abordagem da fatorização k_T .

Henrique Rodrigues Martins Fontes

15 de outubro de 2024

$$P(n) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\langle n \rangle^n k^k}{(\langle n \rangle + k)^{n+k}}.$$
(1)

- Sabe-se que as distribuições de multiplicidade de partículas carregadas são empiricamente bem descritas pela Distribuição Binomial Negativa (NBD).
- O parecimento de uma estrutura em forma de ombro nos dados experimentais fez com que a NBD simples fosse revisitada.

$$P(n) = \lambda \left[\alpha_s P(n, \langle n_s \rangle, k_s) + (1 - \alpha_s) P(n, \langle n_{sh} \rangle, k_{sh}) \right],$$
(2)

onde

$$P(n, \langle n \rangle, k) = \frac{\Gamma(k+n)}{\Gamma(k)\,\Gamma(n+1)} \frac{\langle n \rangle^n \, k^k}{(\langle n \rangle + k)^{n+k}}.$$
(3)

- A estrutura em forma de ombro observada nos dados foi interpretada como a sobreposição ponderada de eventos soft e hard, cada classe sendo descrita por uma NBD simples (Giovannini e Ugoccioni, 1999).
- Como calcular os componentes soft e semihard?

Na fatorização k_T , a multiplicidade por unidade de rapidez é dada por (Wang et al., 2013):

$$\frac{dn}{dy} = \frac{K}{S} \frac{4\pi N_c}{N_c^2 - 1} \int_{p_{\perp min}}^{p_{\perp max}} \frac{dp_{\perp}^2}{p_{\perp}^2} \int^{p_{\perp}} dk_{\perp}^2 \alpha_s(Q^2) \varphi_1(x_1, k_{\perp}^2) \varphi_2(x_2, |\vec{p} - \vec{k}|_{\perp}^2), \quad (4)$$

onde $x_{1,2} = \frac{p_{\perp}}{\sqrt{s}} \exp\{(\pm y)\}$, N_c é o número de cores, K é um fator que descreve a conversão de pártos para hádros, S é a área de interação da colisão e φ é a distribuição de glúons não-integrada.

A distribuição de glúons escolhida foi a do modelo GBW, dada por:

$$\varphi_{1,2}(x_{1,2}, p_{\perp}^2) = \frac{3\sigma_0}{4\pi^2 \alpha_{\rm s}(Q_{{\rm s}_{1,2}})} \frac{p_{\perp}^2}{Q_{{\rm s}_{1,2}}^2} \exp\left(\frac{-p_{\perp}^2}{Q_{{\rm s}_{1,2}}^2}\right),\tag{5}$$

onde

$$Q_{s_{1,2}}^2(y) = Q_0^2 \left(x_0 \frac{\sqrt{s}}{Q_0} \exp(\pm y) \right)^{\lambda}.$$
 (6)

A constante de acoplamento α_s é dada por:

Fatorização k_T

$$\alpha_{\rm s}(Q^2) = \min\left[\frac{12\pi}{27\ln\frac{Q^2}{\Lambda_{QCD}^2}}, 0.52\right],\tag{7}$$

em que

$$Q^{2} = \max[p_{\perp}^{2}, \min(Q_{s,1}^{2}, Q_{s,2}^{2})]$$
(8)

Fatorização k_T

Podemos relacionar a distribuição de glúons não-integrada com a densidade de glúons da seguinte forma:

$$xG(x,\mu^{2}) = \int^{\mu^{2}} dk_{\perp}^{2} \varphi(x,k_{\perp}^{2}).$$
 (9)

A principal contribuição para a expressão da fatorização k_T é dada por duas regiões de integração sobre k_{\perp} : $k_{\perp} \ll p_{\perp}$ e $|\vec{p} - \vec{k}|_{\perp} \ll p_{\perp}$. Sendo assim, podemos reescrever como:

$$\frac{dn}{dy} = \frac{K}{S} \frac{4\pi N_c}{N_c^2 - 1} \int_{p_{\perp min}}^{p_{\perp max}} \frac{d\,p_{\perp}^2}{p_{\perp}^4} \,\alpha_{\rm s}(Q^2) \,xG_2(x_2, p_{\perp}^2) \,xG_1(x_1, p_{\perp}^2), \tag{10}$$

onde

$$xG(x,p_{\perp}^{2}) = \frac{3\sigma_{0}}{4\pi^{2}\alpha_{s}(Q_{s}^{2})} \left(Q_{s}^{2} - \exp\left\{-\frac{p_{\perp}^{2}}{Q_{s}^{2}}\right\}(p_{\perp}^{2} + Q_{s}^{2})\right) \left(1 - \frac{p_{\perp}}{\sqrt{s}}e^{\pm y}\right)^{4}$$
(11)

A partir da expressão da fatorização k_T , podemos separar a integral em p_{\perp} em duas utilizando um cutoff Λ que separa a contribuição soft da semihard:

$$\frac{dn}{dy} = \frac{dn_s}{dy} + \frac{dn_{sh}}{dy},\tag{12}$$

onde

Fatorização k_T

$$\frac{dn_s}{dy} = \frac{K}{S} \frac{4\pi N_c}{N_c^2 - 1} \int_{p_{\perp min}}^{\Lambda} \frac{d\,p_{\perp}^2}{p_{\perp}^4} \,\alpha_{\rm s}(Q^2) \,x G_2(x_2, p_{\perp}^2) \,x G_1(x_1, p_{\perp}^2) \tag{13}$$

e

$$\frac{dn_{sh}}{dy} = \frac{K}{S} \frac{4\pi N_c}{N_c^2 - 1} \int_{\Lambda}^{p_{\perp}max} \frac{d\,p_{\perp}^2}{p_{\perp}^4} \,\alpha_{\rm s}(Q^2) \,xG_2(x_2, p_{\perp}^2) \,xG_1(x_1, p_{\perp}^2) \tag{14}$$

Por fim, realizando a transformação de variável $y \rightarrow \eta$ e integrando em η , temos:

$$\langle n \rangle_{CGC} = \langle n_s \rangle_{CGC} + \langle n_{sh} \rangle_{CGC} \tag{15}$$

A partir da expressão da NBD dupla, temos que:

$$\langle n \rangle_{NBD} = \lambda \alpha_s \langle n_s \rangle + \lambda (1 - \alpha_s) \langle n_{sh} \rangle.$$
 (16)

Se assumirmos que $\langle n \rangle_{NBD} = \langle n \rangle_{CGC}$, temos que:

$$\lambda \alpha_s \langle n_s \rangle = \langle n_s \rangle_{CGC} \tag{17}$$

$$\lambda (1 - \alpha_s) \langle n_{sh} \rangle = \langle n_{sh} \rangle_{CGC}$$
(18)

Com isso, podemos definir as componentes soft e hard de $\langle n \rangle$ da NBD dupla com base nos resultados da fatorização de k_{\perp} . Assim, basta determinar α_s e λ por meio de um ajuste aos dados experimentais, além de estimar k_s e k_{sh} da mesma maneira. Esse procedimento reduz o número de parâmetros ajustáveis de 6 para apenas 4.

Como se está definindo as expressões:

$$\langle n_s \rangle = \frac{\langle n_s \rangle_{CGC}}{\lambda \alpha_s}, \quad \langle n_{sh} \rangle = \frac{\langle n_{sh} \rangle_{CGC}}{\lambda (1 - \alpha_s)}$$
 (19)

O espaço de solução dos parâmetros $\lambda, \alpha_s, k_s \in k_{sh}$ é restringido, pois $\langle n_s \rangle_{CGC}$ e $\langle n_{sh} \rangle_{CGC}$ estão determinando parcialmente os valores que $P(n, \langle n_s \rangle, k_s)$ e $P(n, \langle n_{sh} \rangle, k_{sh})$ podem assumir. Sendo assim, não se garante a normalização da NBD dupla. Para contornar isso, implicamos que a NBD dupla deve ter a mesma normalização dos dados experimentais. Fazemos isso multiplicando a expressão da NBD dupla por:

$$\frac{\sum_{n} P_{dados}(n)}{\sum_{n} P_{NBD}(n)}.$$
(20)

Para produzir os resultados, consideramos os seguintes valores dos parâmetros fixos:

Q_0 (GeV)	x_0	λ	Λ_{QCD} (GeV)	Λ_{cutoff} (GeV)	σ_0 (mb)
1	$4 \cdot 10^{-5}$	0.248	0.226	1.1	27.43

Tabela: Valores dos parâmetros fixos

O parâmetro K/S da fatorização k_T foi ajustado aos dados de distribuição de pseudo-rapidez caso a caso, i.e. para cada eneregia.

Figura: Distribuição de pseudo-rapidez em colisões pp a 0.9 TeV.

Figura: Distribuição de pseudo-rapidez em colisões pp a 2.36 TeV.

Figura: Distribuição de pseudo-rapidez em colisões pp a 2.76 TeV (ALICE, 2017a).

Figura: Distribuição de pseudo-rapidez em colisões pp a 5.02 TeV (Acharya et al., 2023).

Figura: Distribuição de pseudo-rapidez em colisões pp a 7 TeV.

Figura: Distribuição de pseudo-rapidez em colisões pp a 8 TeV (ALICE, 2017a).

Figura: Distribuição de pseudo-rapidez em colisões pp a 13 TeV.

SK S

Resultados distribuição de multiplicidade

Figura: Distribuições de multiplicidade de partículas carregadas em colisões p
p para $|\eta| < 0.5$ a 2.4, com energia de $\sqrt{s} = 0.9$ TeV.

Figura: Distribuições de multiplicidade de partículas carregadas em colisões p
p para $|\eta| < 0.5$ a 2.4, com energia de $\sqrt{s} = 2.36$ TeV.

Resultados distribuição de multiplicidade

 0^{-2} 0^{-1} 0^{-1} 0^{-1} 0^{-1} 10 20 N 40 50

Figura: Distribuições de multiplicidade de partículas carregadas em colisões pp para $|\eta| < 0.5$ a 1.5, com energia de $\sqrt{s} = 2.76$ TeV (ALICE, 2017a).

Figura: Distribuição de multiplicidade de partículas carregadas em colisões p
p para $|\eta| < 0.8$, com energia de $\sqrt{s} = 5.02$ TeV.

ALICE INFL > 0 nn collsion

Double NBD

Inl < 0.8 × 1
</p>

at $\sqrt{s} = 5.02 \text{ TeV}$

Resultados distribuição de multiplicidade

Figura: Distribuições de multiplicidade de partículas carregadas em colisões p
p para $|\eta| < 0.5$ a 2.4, com energia de $\sqrt{s} = 7$ TeV.

Figura: Distribuições de multiplicidade de partículas carregadas em colisões pp para $|\eta| < 0.5$ a 3.4, com energia de $\sqrt{s} = 8$ TeV (ALICE, 2017a; ALICE, 2017b).

Resultados distribuição de multiplicidade

Figura: Distribuição de multiplicidade de partículas carregadas em colisões pp para $|\eta| < 0.8$, com energia de $\sqrt{s} = 13$ TeV.

Tabela: χ^2 reduzidos obtidos a partir do ajuste da NBD dupla aos dados para diferentes

janelas de pseudo-rapidez ($-\eta_c < \eta < +\eta_c$) e energias (\sqrt{s}).

\sqrt{s} (TeV)	η_c	χ^2/dof		$\sqrt{2}$ (T ₂ V)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v^2/def	1			
0.9	0.5	0.033	1	$\sqrt{s(1ev)}$	η_c	χ / doi		\sqrt{s} (TeV)	η_c	χ^2/dof
	1.0	0.121		2.76	0.5	0.021		8.00	0.5	0.030
	1.5	0.055			1.0	0.012			1.0	0.043
	2.0	0.041			1.5	0.032			15	0.058
	2.0	0.041			0.8	0.316			1.5	0.000
	2.4	0.056		7.00	0.5	0.130			2.0	0.025
2.36	0.5	0.170			1.0	0.100			2.4	0.029
	1.0	0.237			1.0	0.110			3.0	0.062
	15	0 099			1.5	0.148			34	0.065
	2.0	0.077			2.0	0.129			0.1	1.452
	2.0	0.140			2.4	0.082			0.8	1.453
	2.4	0.101					J			

• A abordagem usual para a descrição dos dados a partir da NBD dupla era ajustar todos os 6 parâmetros, sem fazer uso de uma teória que descrevesse a dinâmica dos processos.

Conclusão

- No nosso caso, utilizamos o formalismo do Color Glass Condensate para descrever dois parâmetros da NBD dupla que dependem totalmente da dinâmica do processo de produção: $\langle n_s \rangle$ e $\langle n_{sh} \rangle$.
- Ainda temos que ajustar alguns parâmetros, mas a redução de 6 para 4 puramente utilizando teoria já é um ganho!
- Ainda existe a possibilidade de realizar previsões se analisarmos as variáveis ajustadas e percebermos um comportamento.
- Como próximo passo, iremos usar esta metodologia para descrever os dados de colisões p-Pb.