Produção de charmonium em colisões PA

Ríchard Terra de Oliveira

Universidade de São Paulo Instituto de Física

Orientador: Prof. Dr. Fernando Silveira Navarra (IFUSP) Coorientador: Prof. Dr. André V. Giannini (UFGD)

ALICE Junção Bariônica Modelo de Glauber Produção de Charme Conclusão

Dados Experimentais

D. Adamová et al. [ALICE Collaboration], JHEP 776, 91 (2018).

J. Adam et al. [ALICE], JHEP 2016, 78 (2016).

Medidas de produção de mesons charmosos no LHC apresentam um crescimento na região de alta multiplicidade carregada.

Estrutura interna dos nucleons

Junção Bariônica

Quarks ligados por uma corda de gluons em formato de "Y";

O ponto intermediário (Fermat) foi introduzido para manter a invariância de gauge da função de onda de bárions.

$$B_{3} = qqq \text{ baryon} \begin{bmatrix} e^{j_{1}j_{2}j_{3}} \left[P \exp\left(ig \int_{x_{1}}^{x} A_{\mu} dx^{\mu}\right) q(x_{1}) \right]_{j_{1}} \\ \left[P \exp\left(ig \int_{x_{2}}^{x} A_{\mu} dx^{\mu}\right) q(x_{2}) \right]_{j_{2}} \left[P \exp\left(ig \int_{x_{3}}^{x} A_{\mu} dx^{\mu}\right) q(x_{3}) \right]_{j_{3}} \end{bmatrix} \begin{bmatrix} q & x_{1} & x_{2} \\ e & x_{3} \end{bmatrix}$$

A comunidade está em busca de manifestações da junção:

FIRST WORKSHOP ON BARYON DYNAMICS FROM RHIC TO EIC

Dates: Jan 22 – 24, 2024 Location: Center for Frontiers in Nuclear Science (CFNS), Stony Brook University Format: In-person & zoom Participation: Invited Talks + Open Mic Discussion Registration Deadline: Jan 15th, 2024 No registration fee - Limited student support available

- Iremos utilizar condições iniciais de junção
- Iremos buscar os efeitos da junção na produção de charme

Modelo de Glauber

M.L. Miller et al., Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

- Necessita de uma condição inicial de densidade ρ(r);
- Retorna resultados de $N_{part}(b)$ e $N_{coll}(b)$;
- Por causa das altas energias, os nucleons não são defletidos na colisão;
- O tamanho do núcleo é muito maior do que o alcance das forças entre nucleons.

Distribuição de partons no nucleon

$$\rho_N(\mathbf{r};\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3) = \sum_{i=1}^3 \rho_q(\mathbf{r}-\mathbf{r}_i) + \rho_g\left(\mathbf{r}-\sum_{i=1}^3 \frac{\mathbf{r}_i}{3}\right)$$
(1)

Quarks efetivos:

Gluons:

$$\rho_q(r) = (1 - \kappa) \frac{N_g}{3} \frac{e^{-r^2/2r_q^2}}{(2\pi)^{3/2} r_q^3}$$

$$\rho_g(r) = \kappa N_g \frac{e^{-r^2/2r_g^2}}{(2\pi)^{3/2} r_g^3}$$

Distribuição de nucleons no chumbo (Woods-Saxon)

$$\rho_{Pb}(\mathbf{r}) = \frac{\rho_0}{1 + \exp\left(\frac{r-R}{a}\right)} \tag{2}$$

$$\rho_{Pb}(\mathbf{r}) = \sum_{i=1}^{208} \rho_{N_i}(\mathbf{r}; \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$$
(3)

Probabilidade/área de encontrar um parton:

$$T_p(x,y) = \int \rho_N(x,y,z) dz = T_N^q(x,y) + T_N^g(x,y)$$
(4)

$$T_{Pb}(x,y) = \int \rho_N(x,y,z) dz = T_{Pb}^q(x,y) + T_{Pb}^g(x,y)$$
(5)

Probabilidade/área de ocorrer uma interação:

$$T_{pPb}(b) = \int T_p(x - b/2, y) T_{Pb}(x + b/2, y) dx dy$$
 (6)

Thickness

$$T_{pPb}(b) = T_{pPb}^{qq}(b) + T_{pPb}^{gg}(b) + T_{pPb}^{gq}(b) + T_{pPb}^{qg}(b)$$
(7)

Resultados pPb

As probabilidades são iguais!

Ríchard Terra

Número de colisões entre partons

$$N_{coll}(b) = T_{pPb}(b)\sigma^{pp\prime}$$

onde $\sigma^{pp\prime} = 1.48$ mb é a seção de choque parton-parton;

$$\sigma_{NN}^{inel} = 2\pi \int b \left(1 - e^{-\sigma^{pp} T_{NN}(b)} \right) db = 67.6 \text{ mb}$$
 (9)

Número de partons que participam de uma colisão

$$N_{part}(b) = N_{coll}^{3/4}(b) \tag{10}$$

 $\mathsf{Partons} \to \mathsf{nucleons}$

$$N_{part}^{pPb}(b) \to \frac{N_{part}(b)}{N_{part}^{NN}(0)/2} \qquad \qquad N_{coll}^{pPb}(b) \to \frac{N_{coll}(b)}{N_{coll}^{NN}(0)}$$
(11)

(8)

Resultados pPb

D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001).

Densidade de rapidez ($\eta = 0$):

$$\frac{dN}{d\eta}(b) = n_{pp}(s) \{ (1-f) \frac{N_{part}(b)}{2} + f N_{coll}(b) \}$$
(12)

Ríchard Terra

Color evaporation model

R. Vogt, "Ultrarelativistic heavy-ion collisions", Elsevier, (2007).

Processos: $gg \to c\bar{c}$ e $q\bar{q} \to c\bar{c}$ em leading order:

$$\begin{split} \sigma^{CEM} &= K \sum_{i,j} \int_{(2m_c)^2}^{(\Lambda)^2} dm^2 \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j^A(x_2, \mu_F^2) \sigma_{ij}(m^2, \mu_R^2) \delta(m^2 - x_1 x_2 s) \\ &= \sigma_{gg} + \sigma_{q\bar{q}} \end{split}$$

$$N_{c\bar{c}}(b) = T^{gg}(b)\,\sigma_{gg} + T^{qq}(b)\,\sigma_{q\bar{q}} \tag{13}$$

- Para J/ψ introduzimos a porcentagem de $c\bar{c}$ que vira o meson ($\mathbf{F} \approx 2\%$);
- Para D^0 introduzimos a função de fragmentação $D_{c/D^0}(z)$

Fazemos a mudança: $(x_1, x_2) \rightarrow (y, p_T)$ do meson produzido

Resultados preliminares

J. Adam et al. [ALICE], Phys. Rev. C 94, 054908 (2016).

J. Adam et al. [ALICE], JHEP 2016, 78 (2016).

- Conseguimos descrever a região de baixo p_T;
- Explicamos parcialmente a produção de D⁰;
- Precisamos melhorar um pouco o jeito de calcular $dN/d\eta$. Ríchard Terra 15/10/2024

Resultados preliminares

D. Adamová et al. [ALICE Collaboration], JHEP 776, 91 (2018).

- Conseguimos explicar a produção de J/ψ ;
- O crescimento ocorre por conta das altas densidades no centro do chumbo;
- A maior parte da produção vem dos processos $gg \rightarrow c\bar{c}$; Ríchard Terra 15/10/2024

Efeitos da junção

R. Terra and F.S. Navarra, Phys. Rev. D 108, 054002 (2023).

- As condições iniciais de junção explicam os dados;
- Seus efeitos são mais influentes em pp.

Conclusão e perspectivas

- Introduzimos a junção bariônica através do modelo de Glauber;
- Utilizamos o CEM para lidar com a produção de charme;
- Explicamos parcialmente D^0 , mas completamente J/ψ ;
- Os efeitos são mais evidentes em pp do que em pPb ;
- Demos mais um passo na direção de estabelecer a existência da junção.
- Estamos escrevendo um paper sobre o trabalho;
- Gostaríamos de olhar para o efeito da junção em outros observáveis (v₂, por exemplo);

