PRODUCTION OF D^+D^- **MOLECULES IN ULTRAPERIPHERAL** PbPb **COLLISIONS**

Celsina Azevedo¹

¹ cazevedo@if.usp.br

Fernando Silveira Navarra Fernando César Sobrinho

October 15, 2024

1. Introduction

2. Results

3. Conclusions

OVERVIEW

1 Introduction

- Photoproduction cross section
- Absorption effect
- Equivalent photon flux

2 Results

Production of D^+D^- molecules in ultraperipheral PbPb collisions

We study the production of exotic charmonium states in photoinduced processes. We are interested in the production of the bound state D^+D^- through ultraperipheral collisions.¹

¹This work was presented at the international workshop "Hadron spectroscopy and the new unexpected resonances" funded by the Wilhelm and Else Heraeus Foundation — held from September 22 to 25, 2024.

Production of D^+D^- molecules in ultraperipheral PbPb collisions

We study the production of exotic charmonium states in photoinduced processes. We are interested in the production of the bound state D^+D^- through ultraperipheral collisions.¹

Figure 1: Equivalent photon approximation.

¹This work was presented at the international workshop "Hadron spectroscopy and the new unexpected resonances" funded by the Wilhelm and Else Heraeus Foundation — held from September 22 to 25, 2024.

$$\sigma_{AA}(\sqrt{s}) = \int \sigma_{\gamma\gamma \to (D^+D^-)}(\omega_1, \omega_2) N(\omega_1, b_1) N(\omega_2, b_2) S_{abs}^2(b) \frac{W}{2} d^2 b_1 d^2 b_2 dW dY \quad (1)$$

- Photoproduction cross section
- Equivalent photon flux
- Absorption effect

$$\sigma_{AA}(\sqrt{s}) = \int \sigma_{\gamma\gamma \to (D^+D^-)}(\omega_1, \omega_2) N(\omega_1, b_1) N(\omega_2, b_2) S_{abs}^2(b) \frac{W}{2} d^2 b_1 d^2 b_2 dW dY \quad (1)$$

- Photoproduction cross section²
- Equivalent photon flux
- Absorption effect

$$\sigma_{\gamma\gamma\to(D^+D^-)}(\omega_1,\omega_2) = \frac{32\pi^3\alpha^2 F^4(-m_D^2)|\psi(0)|^2}{M_{(D^+D^-)}} \frac{1}{\omega_1\omega_2}\delta(4\omega_1\omega_2 - E_{(D^+D^-)}^2)$$

²F.C. Sobrinho, L.M. Abreu, C.A. Bertulani and F.S. Navarra, Phys.Rev. D 110, 034037 (2024)

$$\sigma_{AA}(\sqrt{s}) = \int \sigma_{\gamma\gamma \to (D^+D^-)}(\omega_1, \omega_2) \, N(\omega_1, b_1) \, N(\omega_2, b_2) \, S^2_{abs}(b) \, \frac{W}{2} \mathrm{d}^2 b_1 \, \mathrm{d}^2 b_2 \mathrm{d}W \mathrm{d}Y \quad (1)$$

- Photoproduction cross section
- **Equivalent photon flux**
- Absorption effect

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \omega b^2} \left[\int_0^\infty u^2 J_1(u) F\left(\sqrt{\frac{u^2 + (b\omega/\gamma)^2}{b^2}}\right) \frac{1}{u^2 + (b\omega/\gamma)^2} \, du \right]^2$$

$$\sigma_{AA}(\sqrt{s}) = \int \sigma_{\gamma\gamma \to (D^+D^-)}(\omega_1, \omega_2) N(\omega_1, b_1) N(\omega_2, b_2) \frac{S^2}{a_{abs}}(b) \frac{W}{2} d^2 b_1 d^2 b_2 dW dY \quad (1)$$

- Photoproduction cross section
- Equivalent photon flux
- Absorption effect

$$S_{abs}^{2}(b) = \begin{cases} 1 \rightarrow \text{without absorption} \\ \Theta(|b| - R_1 - R_2) = \Theta(|b_1 - b_2| - R_1 - R_2) \\ 1 - P_H(b) \quad \text{with} \quad P_H(b) = 1 - \exp\left[-\sigma_{nn} \int d^2 r T_A(r) T_A(r-b)\right] \end{cases}$$

Figure 2: Impact parameter dependence of the absorptive factor.

EQUIVALENT PHOTON FLUX

Figure 3: The form factor as a function of transferred momentum of the *Pb* nucleus.

Figure 4: Equivalent photon flux as a function of distance from nucleus center for different form factors.

RESULTS

1 Introduction

2 Results

3 Conclusions

ENERGY DEPENDENCE OF THE TOTAL CROSS SECTION

Figure 5: Energy dependence of the total cross section for the D^+D^- bound state photoproduction.

RAPIDITY DISTRIBUTION

Figure 6: Rapidity distribution D^+D^- bound state.

	σ (point-like)	$\sigma \; ({\rm monopole})$	σ (realistic)
$S^2_{abs}(b) = 1 \rightarrow \text{no abs}$	1.40	2.17	1.92
$S_{abs}^2(b) = \Theta(b - 2R)$	1.32	1.91	1.72
$S_{abs}^2(b) = 1 - P_H(b)$	1.30	1.86	1.68

Table 1: Total cross sections for $D\bar{D}$ production in ultraperipheral PbPb collisions with $\sqrt{s} = 5.02$ TeV (in μ b).

	$\sigma \; ({\rm point-like})$	$\sigma \; ({\rm monopole})$	σ (realistic)
$S^2_{abs}(b) = 1 \rightarrow \text{no abs}$	1.40	2.17	1.92
$S_{abs}^2(b) = \Theta(b - 2R)$	1.32	1.91	1.72
$S_{abs}^2(b) = 1 - P_H(b)$	1.30	1.86	1.68

Table 1: Total cross sections for $D\bar{D}$ production in ultraperipheral PbPb collisions with $\sqrt{s} = 5.02$ TeV (in μ b).

The magnitude of the cross section, is comparable to the value obtained in the literature $(3 \mu b)$ when considering the contribution of all the diagrams².

²F.C. Sobrinho, L.M. Abreu, C.A. Bertulani and F.S. Navarra, Phys.Rev. D 110, 034037 (2024)

EXOTIC MESONS PRODUCTION

Figure 7: Total cross section for the exotic mesons photoproduction as a function of the energy.

Figure 8: Rapidity distribution of the exotic mesons produced in $\gamma\gamma$ interactions.

EXOTIC MESONS PRODUCTION

Figure 7: Total cross section for the exotic mesons photoproduction as a function of the energy.

Figure 8: Rapidity distribution of the exotic mesons produced in $\gamma\gamma$ interactions.

	$X(3915), 0^{++}$	$X(3940), 0^{++}$	$X(4140), 0^{++}$
$\sigma (\mu b)$	6.83	11.06	17.48

3

CONCLUSIONS

1 Introduction

2 Results

3 Conclusions

- We have calculated the production of heavy meson molecules in UPC.
- Choosing a realistic absorption effect has little impact.
- The predictions are sensitive to the level of precision used to calculate the photon flux.
- The analytical expression for the cross section $\gamma \gamma \rightarrow D^+ D^-$ is a good approximation.
- Production of these states by $\gamma\gamma$ interactions in future electron-ion colliders.

THANK YOU FOR YOUR ATTENTION!