Measurement of W-width in high mass charged current Drell-Yan process

Pedro Henrique de Almeida Mascarenhas Advisor - Dr. Marco Aurélio Lisboa Leite 15/10/2024

Drell-Yan process

- Drell-Yan process was formulated as a electromagnetic process.
- A quark-antiquark interaction in hadrons annihilation generates a lepton pair.
 - Photon mediated.
- Later it was discovered that Higgs, Z and W bosons also can mediate.
 - Neutral or charged process.
- Lepton pair formation was important to discover quarkonia states, Higgs, Z and W bosons.
- Now, it is important in the search of New Physics.

The weak force

- Standard Model is the most successful theory to describe the interaction of fundamental particles.
- Precise measurements is important to test the consistency of SM.
 - Deviations can indicate the possibility of New Physics.
- W and Z bosons mediates the weak force.
- Precise measurements of W boson are more complicated than Z boson.
 - Formation of 1 neutrino.

Motivation

- Decay width (Γ) is related with particle decay time.
- Electroweak predicts W width decay Γ_{W} , = 2088 ± 1 MeV.
- Particles candidates that have masses smaller than W boson and couple with it, would alter Γ_w , as result of new W decay channel.
- Knowing Γ_{w} hadronic decay ratio with precision can determine α_{s} from QCD.
- $\Gamma_{\rm W}$ and $\rm m_{\rm W}$ are related by $\rm G_{\rm F}$ constant.
 - m_w is constraint with m_t and m_H .
 - \circ m_w are related to weak mixing angle.

W boson width direct measurement in Tevatron

Fermilab Tevatron

- Using D0 detector Γ_W was measured directly by proton antiproton collisions, at 1.96 TeV center-of-mass.
 1 fb⁻¹ integrated luminosity.
- Electron with p_t > 25 GeV. Neutrino p_t was inferred using MET.
- $W \rightarrow ev$ channel.
- Background events:
 - \circ Z \rightarrow ee
 - $\circ \quad \mathsf{W} \to \tau \nu$
 - Multijet were 1 jet was identified as electron.

ABAZOV, V. M. et al. Direct measurement of the W boson width. Physical review letters, v. 103, n. 23, p. 231802, 2009.

Fermilab Tevatron

- Γ_w was retrieved by comparing transverse mass distribution with MC simulations generated with different widths.
- Maximum likelihood method was used to retrieve Γ_w.
- Γ_w = 2.202 ± 0.072 GeV.
 - Consistent with SM.

ABAZOV, V. M. et al. Direct measurement of the W boson width. Physical review letters, v. 103, n. 23, p. 231802, 2009.

W boson width direct measurement in LEP collaboration

LEP collaboration

- m_w and Γ_w were determined in process that yielded two W bosons.
 - Mostly in hadronic or semi-leptonic channels.
- Data are compared with MC samples with known values of m_w and Γ_w , which had the best model for the data.
 - MC simulations in 161 GeV center-of-mass energy was used.
 - Has the most sensitive m_W cross-section.
 - 172 183 GeV center-of-mass energy was used too.

LEP W-Boson Width

ALEPH COLLABORATION et al. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. **Physics reports**, v. 532, n. 4, p. 119-244, 2013.

LEP collaboration

- Maximum likelihood was used to determine m_w and Γ_w .
- $m_W = 80.376 \pm 0.025_{stat} \pm 0.022_{syst}$ GeV.
- $\Gamma_{W} = 2.195 \pm 0.063_{stat} \pm 0.055_{syst}$ GeV

ALEPH COLLABORATION et al. Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. **Physics reports**, v. 532, n. 4, p. 119-244, 2013.

W boson width direct measurement in ATLAS

ATLAS collaboration

- First F_W direct measure in LHC, with 7 TeV center-of-mass energy.
 - Low luminosity.
- m_w also was measured.
- $W \rightarrow l\nu$, (I = e, μ).
- Leptonic decaying Z, boson pair, W→τν and top-quark backgrounds was treated with MC simulations.
- Maximum likelihood was used to determine $m_{_W}$ and $\Gamma_{_W}.$

ATLAS COLLABORATION et al. Measurement of the W-boson mass and width with the ATLAS detector using proton-proton collisions at \$\sqrt {s} \$= 7 TeV. arXiv preprint arXiv:2403.15085, 2024.

ATLAS collaboration

- The results were:
- m_w = 80.366 ± 15.9 MeV.
- Γ_W = 2202 ± 47 MeV.
 Most precise measurement.
- Both measurements were in agreement with SM prediction.

 Γ_w in 2.4σ.
- Ongoing analysis at high luminosity.

ATLAS COLLABORATION et al. Measurement of the W-boson mass and width with the ATLAS detector using proton-proton collisions at \$\sqrt {s} \$= 7 TeV. arXiv preprint arXiv:2403.15085, 2024.

ATLAS collaboration - Γ_{w} and m_{w} constraint

ATLAS COLLABORATION et al. Measurement of the W-boson mass and width with the ATLAS detector using proton-proton collisions at \$\sqrt {s} \$= 7 TeV. arXiv preprint arXiv:2403.15085, 2024.

W boson mass measurement in CMS

CMS collaboration

- First measurement in CMS collaboration.
- 13 TeV center-of-mass energy.
- $W \rightarrow \mu v$ channel.
- Most precise measure of m_w
 - Consistent with SM prediction.
- Background events:
 - \circ μ from QCD jets
 - $W \rightarrow \tau v$ and $Z \rightarrow \tau \tau$ were treated with MC simulations.
- Maximum likelihood was used to determine m_w.

CMS COLLABORATION et al. Measurement of the W boson mass in proton-proton collisions at \sqrt{s} = 13 TeV, 2024.

CMS *Preliminary*

EW fit

 m_W (MeV)

80450

80400

- MC generator validation Sherpa 2.2.14 at 13 TeV center-of-mass energy.
 - High-mass.
 - High-luminosity.
 - Comparison with Sherpa 2.2.14 simulation and unfolded data.
 - Unfolding: Infer the true distribution of an observable, using reconstructed data.
- Γ_{W} from $W \rightarrow Iv$, (I = e, μ) channel.
- Rivet 3.1.7 software (ATLAS implementation).
 - C++ based-software.
 - High-Energy Physics research.
 - SM and BSM analysis.
 - It has an extent analysis codes repository.

- Cuts:
 - 1 Lepton of either electric charge.
 - Leptons with p_{T} > 26 GeV.
 - \circ | η | < 2.47
 - MET < 25 GeV.
- Initial samples:
 - BFilter; CFilterBVeto; CVetoBVeto.
 - \circ 10⁵ events.
 - Sherpa 2.2.11 at 13 TeV center-of-mass energy.
 - MC16
 - Sherpa 2.2.14 at 13.6 TeV center-of-mass energy.
 - MC23
- Rivet 3.1.7 software.

- W boson kinematic distributions:
 - Transverse mass
 - Mass
 - Transverse momentum
 - Rapidity
 - Pseudorapidity
 - Azimuthal angle
- Lepton kinematic distributions:
 - Transverse momentum
 - Pseudorapidity
 - Azimuthal angle
- W boson lepton distributions:
 - Azimuthal separation.
 - Pseudorapidity separation.
 - Angular distance separation.

Results $W \rightarrow ev \text{ process}$

W transverse mass

W transverse momentum

Leptonic transverse momentum

W boson azimuthal distribution

Lepton pseudorapidity

Next steps...

- Implementation of unfolded data to HmTW MC simulations.
- Generate Sherpa 2.2.14 at 13 TeV center-of-mass energy MC samples, with different $\Gamma_{\rm W}$ values.

Appendix - Another kinematic distributions

W mass

W boson pseudorapidity

Missing transverse energy

Leptonic azimuthal distribution

Azimuthal separation between W boson and lepton

Angular separation between W boson and lepton

Pseudorapidity separation between W boson and lepton

