

NEUTRINO24 conferenceselection of results

 Magdalena Posiadala-Zezula University of Warsaw

 $\frac{1}{2}$ **XXXI International Conference on Neutrino Physics and Astrophysics (Neutrino24) Milan, Italy, 17-22 June 2024**

https://neutrino2024.org/

Neutrino oscillations

Neutrino mass

Neutrinoless Double Beta Decay

Neutrino interactions

Accelerator neutrinos

Reactor neutrinos

Atmospheric neutrinos

Solar neutrinos

Conference chairs:

Supernova neutrinos

Astrophysical neutrinos

Geoneutrinos

Neutrino role in cosmology

Sterile neutrinos

Theory of neutrino masses and mixing, Leptogenesis

Beyond Standard Model searches in the neutrino sector

> New technologies for neutrino physics

NEUTRINO 2024 XXXI International Conference on Neutrino Physics and Astrophysics Milano (Italy) - June 16-22, 2024

• The most important conference in Neutrino field • 71 scientific talks plus 460 posters • Polish contribution: my Super-Kamiokande talk + • POSTERS: Katarzyna Kowalik (NCBJ), prof. Jan Sobczyk (University of Wroclaw), dr hab. Artur Ankowski (University of Wroclaw)

neutrino physics

4

Conference chairs:

NEUTRINO 2024

XXXI International Conference on Neutrino Physics and Astrophysics

Milano (Italy) - June 16-22, 2024

https://neutrino2024.org/

Recent and **future** prospects in atmospheric/accelerator neutrino searches- subjective selection

Atmospheric neutrinos

Physics of nu osc. with atmospheric nu detectors

Aula Magna (U6 building), University of Milano-Bicocca

Atmospheric neutrinos at Super-Kamiokande

Aula Magna (U6 building), University of Milano-Bicocca

A Decade of Atmospheric Neutrino Oscillations with IceCube

Aula Magna (U6 building), University of Milano-Bicocca

Future atmospheric neutrino detectors

Aula Magna (U6 building), University of Milano-Bicocca

Atmospheric neutrinos

• Neutrinos are produced when cosmic particles, mainly protons, interact with the nuclei in the atmosphere: **•with wide range of energy MeV- TeV produced isotropically about the Earth atmosphere •travel length varies 10km ~13000 km**

Atmospheric neutrinos

8

• Neutrinos are produced when cosmic particles, mainly protons, interact with the nuclei in the atmosphere: **MeV- TeV produced isotropically about the Earth atmosphere ~13000 km**

- **•with wide range of energy**
- **•travel length varies 10km**

E. Richard et al. (SK), PRD 94 (2016) 5

Neutrinos, Atmospheric Neutrinos, Far detector for T2K

The Super-Kamiokande experiment

- Super-Kamiokande has been taking data since 1996 and has come through seven run periods
- various physics targets.
-

• Densely packed PMTs (40% / 20% for SK-II) and good water quality provide excellent sensitivity for

• In 2020 we have added Gd sulfate to the water in order to increase the sensitivity for neutron capture.

11

•Thanks to presence of matter effects we are sensitive to neutrino mass ordering $\frac{1}{2}$ **
** $\frac{1}{2}$ **
 \frac{1**

•Impact of matter effects:

10 **Neutrino Energy [GeV]**

- **•NO: enhancement of** *νe* **appearance**
- **•NO: effect is not**

 \bm{p} resent for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

•IO; situation is reversed

Oscillograms plotted with: $\Delta m^2_{21} = 7.7 \times 10^{-5}$ eV², $\sin^2\theta_{23} = 0.50$, $\sin^2\theta_{12} = 0.30$, $\sin^2\theta_{13} = 0.0219$ and $\delta_{CP} = 0$ x^2 Phys. Rev. D. 97 072001

ν

ν

 E_v (GeV)

- Latest results with **full SK pure water phase (SK1-5)**:
	- Latest publication - **Phys. Rev. D 109, 072014 Published on 24 April 2024**
	- Previously published results: Phys. Rev. D97, 072001 (2018)
- Updates since the previous analysis:
	- **•Expansion of fiducial volume and more lifetime: 6511 days, 484 kt yr in total +50% of statistics** ⋅
	- **•Event selection with neutron tagging on hydrogen (SK4-5)**
	- New multi-ring event classification using a Boosted Decision Tree (BDT)
		- Improved charged current/neutral current separation
- Atmospheric ν oscillation fit with external constrains
	- \cdot θ_{13} from reactors

Zenith angle atmospheric neutrino oscillation analysis

SK-V 7%

SK-IV 50%

★Atmospheric neutrino events at Super-K are classified into several categories:

Fully contained Partially contained Upward stopping muon

Expected energy spectra of atm-v samples

Distance btw vertex and nearest ID wall surface = "wall"

Magdalena Posiadala-Zezula, NEUTRINO 2024, Milan 17-22 June 2024 13

Enlarging the Fiducial Volume

- Conventional fiducial volume defined as wall > 2m
- Expanded fiducial volume to wall > 1m (for all SK periods) \star Increased fiducial volume by 20% (22.5kt \rightarrow 27.2kt)
- Confirmed no significant increase of non-ν background and no significant bias in reconstruction (ex. energy scale)
- Systematics in the expanded region recalculated and under control

- **Conventional FV Michel-e**
- •- Expanded FV Michel-e
- **Conventional FV** π^0 Mass
- $\overline{-}$ \blacksquare Expanded FV π^0 Mass
- → Sub-GeV Stopping Muon
- **-*** Multi-GeV Stopping Muon

Zenith angle or momentum distributions

14

•Zenith angle or momentum distributions for the **19 analysis samples without neutron tagging.**

 \cdot PC, UPMU, FC π^0 , FC Multi-Ring samples use SK-I~V data,

•FC: Sub-GeV and Multi-GeV samples with SK-I~III data, no neutron tagging included*

Neutron tagging on hydrogen at Super-K

Reminder: $\nu_e + n \to e^- + p$ $\overline{\nu}_e + p \rightarrow e^+ + n$

- IBD reaction: $\bar{\nu}_e + p \rightarrow n + e^+$
- Neutron tagging may happen on hydrogen.
	- $\cdot n + p \rightarrow d + \gamma(2.2MeV)$
	- The gamma ray may then scatter electrons (Compton scattering) in the water, accelerating some of them above the Cherenkov threshold.
	- Identifying the light from those electrons can be used to infer the presence of the gamma ray and hence its parent neutron.

•

Abe_2022_J._Inst._17_P10029.pdf

Possible from SK-IV period

•Additional selections done for SK4 and SK5 data period, **with neutron tagging on Hydrogen.** •Improves separation between *ν* and $\bar{\nu}$ events

SK samples - impact of neutron tagging

•Additional selections done for SK4 and SK5 data period, **with neutron tagging on Hydrogen.** •Improves separation between ν and $\bar{\nu}$ events

SK samples - impact of neutron tagging

17

Full SK pure water phase (SK1-5) best fit results:

-
-
-

SK atmospheric *ν* results **Phys. Rev. D 109, 072014, (2024)**

With $\sin^2\theta_{13}$ constrained [PTEP 2022, 083C01 (2022]) $sin^2\theta_{13} = 0.0220 \pm 0.0007$

SK data release on Zenodo page:

https://zenodo.org/ records/8401262

SK atmospheric *ν* results

With $\sin^2\theta_{13}$ constrained [PTEP 2022, 083C01 (2022]) $sin^2\theta_{13} = 0.0220 \pm 0.0007$

Full SK pure water phase (SK1-5) best fit results:

- Normal ordering, $\delta_{CP} \simeq -\pi/2$,
- **•** $\Delta m_{32}^2 \simeq 2.4 \cdot 10^{-3}$ eV², sin² $\theta_{23} \simeq 0.45$ (Lower octant)
- Mass ordering: $\Delta \chi_{I.O-N.O}^2 \simeq 5.69$

Phys. Rev. D 109, 072014, (2024)

SK data release on Zenodo page:

https://zenodo.org/ records/8401262

L/E analysis @ Super - Kamiokande

-
- -
	-

Juan Pablo Yanez: "A Decade of Atmospheric ν Oscillations with IceCube" - For the IceCube Collaboration, Neutrino24

IceCube Neutrino Observatory

✦The IceCube Neutrino Observatory is :

- ✦Ice Cherenkov telescope located at the geographic South Pole
- ✦It consists of **5,160 Digital Optical Modules (DOMs)** deployed in **86 boreholes** that were drilled with a high-pressure hot water drill
- ✦The bottom-center part of the array, referred to as **DeepCore** has a reduced horizontal spacing of 42-72 m and a vertical spacing of 7 m.

Measurements of neutrino oscillations (DeepCore)

Juan Pablo Yanez: "A Decade of Atmospheric ν Oscillations with IceCube" - For the IceCube Collaboration, Neutrino24 23

Events as seen by the detector

GeV events in DeepCore for ν oscillations

Color indicates time (red=early, blue=late). Sphere size is proportional to number of photons observed.

Juan Pablo Yanez: "A Decade of Atmospheric ν Oscillations with IceCube" - For the IceCube Collaboration, Neutrino24 ²⁴

TeV event in IceCube for sterile ν searches

IceCube atmospheric neutrinos 2023 analysis

- ✦A new data sample of collected by the DeepCore.
- ✦Published in **PHYSICAL REVIEW D 108, 012014 (2023)** ✦What is new?
	- ✦**updated response of the optical modules calibrated** individually
	- ✦**a more accurate description of the glacial ice**
	- ✦**improved reconstructions an event selection** with higher background rejection efficiency,
	- ✦**the new sample includes 8 years of data collected from 2011-2019, which more than doubles the lifetime used in previously published analyses**

Absorption (m^{-1})

Atmospheric oscillations progression

Juan Pablo Yanez: "A Decade of Atmospheric ν Oscillations with IceCube" - For the IceCube Collaboration, Neutrino24 \vert 26

IceCube result from 2024

Atm. Osc. - Newest result

• CNN-based classification and reco

- Uses inputs that our MC describes well
- Recovers events that are hard to handle
- \cdot 150,000 ν candidates in 9 years of data
- Best fit $\sin^2 \theta_{23} = 0.54^{+0.04}_{-0.03}$ $\Delta m_{32}^2 = 2.40^{+0.05}_{-0.04} \times 10^{-3}$ eV² GoF p-value: 19%

Juan Pablo Yanez: "A Decade of Atmospheric ν **Oscillations with IceCube" - For the IceCube Collaboration, Neutrino24**

Joint fits (1): Accelerator + atmospheric neutrinos

 \exists

28

T2K experiment

- High intensity ~600 MeV v_{μ} or \bar{v}_{μ} beam produced at J-PARC (Tokai)
- Neutrinos detected at the Near Detector (ND280) and at the Far Detector (Super-Kamiokande)
	- v_e and \bar{v}_e appearance \rightarrow determine θ_{13} and δ_{CP}
	- Precise measurement of v_{μ} disappearance $\rightarrow \theta_{23}$ and $|\Delta m^2_{32}|$

Physics case

$$
P(\nu_{\mu} \to \nu_{\mu}) = P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}) = 1 - \sin^2(2\theta_{23})\sin^2\left(1.27\frac{\Delta m^2 L}{E}\right)
$$

Claudio Giganti: "T2K experiment status and plans" - For the T2K Collaboration, Neutrino24 **³⁰**

T2K only oscillation analysis results

In T2K δ_{CP} and mass ordering have similar effect on $\nu_e/\bar{\nu}_e$ event rates - so called degeneracy of oscillation parameters

³¹ Claudio Giganti: "T2K experiment status and plans" - For the T2K Collaboration, Neutrino24

Motivation of the joint fit between Super-K atmospheric and T2K data

- Resonance in earth mantle and core in Multi-GeV region, only for neutrinos in normal and anti-neutrinos in inverted mass ordering (MO)
- **MO**

Zhenxiong Xie: "Joint analysis of the Super-Kamiokande atmospheric and T2K data" - For the T2K Collaboration, HEPP 2024 **³²**

SK +T2K joint fit results

https://arxiv.org/pdf/2405.12488 (2024)

 \cdot Jarlskog invariant J_{CP} =0 is excluded at 2.0 σ (1.9 σ) for prior in flat δ_{CP} (for prior in flat $\sin\!\delta_{CP}$)

The results show:

-
- a limited preference for the normal ordering,
- \cdot and no strong preference for the θ_{23} octant.

Joint fits (2): Accelerator + accelerator neutrinos

 $\begin{array}{c} \begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \\ \end{array} \end{array}$

J2R

NOvA and T2K are complementary Compared to T2K*, NOvA uses a different experimental approach

NOvA active scintillator calorimeters

see significant energy from both lepton and hadron systems: "calorimetric" E_v reconstruction

& functionally equivalent detectors

shared uncertainties mostly cancel

Jeremy Wolcott "New NOvA Resultswith 10 Years of Data" - For the Nova Collaboration, Neutrino24 **³⁶**

T₂K

water Cherenkov FD

 $v_{\rm e}$ -like

see only lepton energy: "kinematic" E_v reconstruction

Hybrid gas TPC & scintillator tracker ND

ND+FD shared uncertainties explicitly fitted & constrained via model

NOvA-T2K joint fit: PMNS parameters

NOvA only: Phys. Rev. D106, 032004 (2022) T2K only: Eur. Phys. J. C83, 782 (2023)

Joint fit splits the difference b/w NOvA-only & T2K-only in NO; improves constraint in IO

Jeremy Wolcott "New NOvA Results with 10 Years of Data" - For the Nova Collaboration, Neutrino24 38

"assuming IO is true" (does not include relative probability of IO vs. NO)

 \circ

NOvA-T2K joint fit: takeaways

Advancing the precision frontier on $|\Delta m^2_{32}|$ <2% measurement!

Mild preference for Inverted Ordering but influenced by θ_{13} constraint

Jeremy Wolcott "New NOvA Results with 10 Years of Data" - For the Nova Collaboration, Neutrino24 $\frac{39}{}$

Astrophysical neutrino(s)

Uncharted Territory

At the highest energies, there's darkness...

Astrophysical neutrino(s)

Uncharted Territory

- Significant event observed with huge amount of light
- entire ARCA21 detector Horizontal event (1° above horizon) as expected since earth opaque to neutrinos at PeV scale 3672 PMTs (35%) were triggered in the detector Muons simulated at 10 PeV almost never generate this much light - Likely multiple 10's of PeV KM3NeT/ARCA21 Preliminary Line 24 0.35 10PeV μ MC **KM3NeT** 1PeV μ MC Preliminary 0.30 $10⁶$ VHE event event 0.25 10^5 $\frac{6}{5}$ 0.20 ď $\frac{6}{4}$ 0.15 $0.05 10¹$ 0.00 3000 4000 5000 1000 2000 Ω # of triggered PMTs 0.25 0.50 0.75 0.00 cos(zenith residual (ns)
-
-

Uncharted Territory

Event is well reconstructed as a high energy muon crossing

 \bullet

Summary slides

 $0 - 10 = 0$

 θ -dj- θ

BILLULLI DOSTAG

SUMMARY OF OSCILLATION RESULTS FOR THREE AUTIVE VITPES
Particle Data Group
Assessment Reserves To the Case of the Case

Art McDonald "Where are we and where are we going?" - Neutrino24 **43**

FUTURE :) DUNE Jiangmen Underground Neutrino Observatory (JUNO) 2 JUNO ◆ Proposed as a reactor neutrino experiment for mass ordering in 2008 (PRD78:111103,2008; PRD79:073007,2009) Wideband (anti)neutrino beamline with \bullet \Rightarrow driving the design specifications: location, 20 kton LS, 3% energy resolution, 700 m underground • Rich physics program in solar, supernova, atmospheric, geo-neutrinos, proton decay, exotic searches Underground, modular LArTPC Far Det \bullet ◆ Approved in 2013. Construction in 2015-2024 Movable LArTPC Near Detector with mu \bullet separate on-axis det Ideal distributi
 $E_{\text{res}} = 3\%$ J.Phys.G43, 030401 (2016) The Lufeng **Global collaboration Huizhou** \bullet **NPP Optimal Baseline NPP** Daya Bay • KM3NeT is building a s **NPP** $L(Km)$ The KM3NeT DOMs a **UNO** 74 institutions, >700 collaborators Asia: China (34), Taiwan, China (3) Thailand (3), Pakistan, Armenia Europe: Italy (8), Germany (7), France (5), Russia (3), Belgium, Czech, 53 km **DUNE - Neut** Finland, Latvia, Slovakia, Uk JUNO-TAO **Taishan NPP** ² cores, 9.2 GW_{th} **Yangjiang NPP**

Hyper-Kamiokande Project

Rich physics & discovery potential **Construction started in 2020** Operation will start in 2027

Two host institutes:

Thank you!

Photo Credit: Piotr Mijakowski

46

INFN Bari, ItalyI NFN Napoli, Italy INFN Padova, Italy INFN Roma, Italy Kavli IPMU, The Univ. of Tokyo, Japan Keio University, Japan KEK, Japan King's College London, UK Kobe University, Japan Kyoto University, Japan University of Liverpool, UK LLR, Ecole polytechnique, France University of Minnesota, USA Miyagi University of Education, Japan ISEE, Nagoya University, Japan NCBJ, Poland Okayama University, Japan Osaka Electro-Communication Univ.,Japan University of Oxford, UK

Kamioka Observatory, ICRR, Univ. of Tokyo, Japan RCCN, ICRR, Univ. of Tokyo, Japan University Autonoma Madrid, Spain BC Institute of Technology, Canada Boston University, USA BMCC/CUNY, USA University of California, Irvine, USA California State University, USA Chonnam National University, Korea Duke University, USA Gifu University, Japan GIST, Korea University of Glasgow, UK University of Hawaii, USA IBS, Korea IFIRSE, Vietnam Imperial College London, UK ILANCE, France/Japan

Rutherford Appleton Laboratory, UK Seoul National University, Korea University of Sheffield, UK Shizuoka University of Welfare, Japan University of Silesia in Katowice, Poland Sungkyunkwan University, Korea Tohoku University, Japan The University of Tokyo, Japan Tokyo Institute of Technology, Japan Tokyo University of Science, Japan University of Toyama, Japan TRIUMF, Canada Tsinghua University, China University of Warsaw, Poland Warwick University, UK The University of Winnipeg, Canada Yokohama National University, Japan

The Super-Kamiokande Collaboration

~230 collaborators from 54 institutes in 11 countries

 $\boxed{\bullet}$

SK-Gd era Gadolinium project at Super-K: SK-Gd

•Physics targets:

-
-
-

Neutrons in atmospheric *ν* interactions

- •SK-Gd: neutron multiplicity measurements
- **Large uncertainty in "neutron smearing"**
- • **Huge differences between models**
- •**Neutron multiplicity = measured neutrons detec eff.**

Events/year

 25

20

 15

 10

Magdalena Posiadala-Zezula, NEUTRINO 2024, Milan 17-22 June 2024 50

•Why neutrons are useful in the atmospheric oscillation analysis?

- •they improve the $\nu/\bar{\nu}$ separation,
- \cdot they improve the reconstruction of E_ν and ${\sf neutrino}$ direction d_ν with information on neutron momentum $\overrightarrow{p_n}$ (estimated from neutron travel distance @ the SK- assuming $\overrightarrow{p_n}\propto |PC|$)

•See the poster #112 by Shintaro Miki: Atmospheric Neutrino Oscillations in SK-Gd

SK6 reconstruction with neutrons

- The number of decay electrons is used to separate events into neutrino or antineutrino enhanced samples
- neutrino-antineutrino separation.

• From SK-IV period it was possible to search for neutron captures on hydrogen to increase

- Separation of ν_e and $\bar{\nu}_e$ is **important for mass ordering searches**
- No magnetic filed in the Super-K detector to do that
- However we have larger crosssection and flux for ν_e than $\bar{\nu}_e$ which results in **twice more** *νe* interactions than $\bar{\nu}_e$ in the **Super-K detector**

1.4 $\frac{1}{2}$ GeV⁻¹ (10^{-38}) 0.6 $\frac{1}{6}$ 0.4 0.2 0

> Ratios Neutrino Flux

Separation of ν_e and $\bar{\nu}_e$

Separation of ν_e and $\bar{\nu}_e$

 \cdot $\bar{\nu}_e + n \rightarrow e^+ + n + \pi^-$ and π^- will often be captured on oxygen nucleus leaving the e^+ as $\pi^$ the only Cherenkov light emitting particle. No decay electron will be seen in that event \cdot ν_e $+$ n \rightarrow $e^ +$ n $+$ π^+ where π^+ does not capture and can decay to μ^+ and later produce π $\bar{\nu}_e + n \rightarrow e^+ + n + \pi^-$ and π^- will often be captured on oxygen nucleus leaving the e^+

- The number of decay electrons is used to separate events into neutrino or antineutrino enhanced samples.
	- **Single-ring Multi-GeV class:**
		-
		- delayed electron $\nu_e + n \rightarrow e^{-} + n + \pi^{+}$ where π^{+} does not capture and can decay to μ^{+}

Neutron tagging on hydrogen at Super-K

Reminder: $\nu_e + n \to e^- + p$ $\overline{\nu}_e + p \rightarrow e^+ + n$

- IBD reaction: $\bar{\nu}_e + p \rightarrow n + e^+$
- Neutron tagging may happen on hydrogen.
	- $\cdot n + p \rightarrow d + \gamma(2.2MeV)$
	- The gamma ray may then scatter electrons (Compton scattering) in the water, accelerating some of them above the Cherenkov threshold.
	- Identifying the light from those electrons can be used to infer the presence of the gamma ray and hence its parent neutron.

•

Abe_2022_J._Inst._17_P10029.pdf

Possible from SK-IV period

Other SK talks@ Neutrino24:

1. Masayuki Harada: Review of diffuse SN neutrino background **SK posters @ Neutrino24:**

A STANDARD AND A CONTRACTOR OF THE CONTRACTOR

17.Lucas Nascimento Machado: Combined KamLAND and Super-Kamiokande Presupernova Alarm 1. Z. Xie, L. Berns: First joint analysis of Super-Kamiokande atmospheric and T2K accelerator neutron data 2. Natsumi Ogawa: Search for proton decay via $p \to e^+ + \eta$ and. $p \to \mu^+ + \eta$ in Super-Kamiokande 3. Thomas Wester: Neutrino oscillation analysis with Super-Kamiokande's highest-resolution events 4. Maitrayee Mandal: Tau neutrino appearance and the measurement of the neutrino mass ordering at Super-Kamiokande 5. Shintaro Miki: Atmospheric Neutrino Oscillations in SK-Gd 6. Antoine Beauche: Diffuse Supernova Neutrino Background: Insights from Super-K & prosecutes with Hyper-K 7. Rudolph Rogly: Overview of the model-dependent approach for the Diffuse Supernova Neutrino Background search with SK-Gd 8. A.Santos, Y.Kanemura, M.Harada: New limits on the low-energy astrophysical electron antineutrinos at SK-Gd experiment 9. Yuuki Nakano: Solar neutrino measurement using the Super-Kamiokande detector 10.S. Izumiyama et al.: Observation of distant reactor neutrino in Super-Kamiokande with gadolinium- loaded water 11.Fumi Nakanishi: Search for "mini - burst" supernova neutrinos in Super-Kamiokande 12.Tomoaki Tada: Constraint on the atmospheric neutrino flux models using the cosmic-ray muon data in the Super-Kamiokande 13.Barry Pointon: HEALPix-based Analysis of Burst Neutrinos for Supernova Direction Reconstruction at Super-Kamiokande 14.Saki Fujita Energy: Scale Calibration of the Super-Kamiokande Detector using the Decay of Nitrogen-16 15.Guillaume Provost: Supernova burst monitoring in Super-Kamiokande 16.Alejandro Yankelevich: Measurement of below 3.49 MeV solar neutrinos at Super-Kamiokande

Open Access

- The mass ordering sensitivity is highly dependent on the values of $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and δ_{CP}
- This figure shows the sensitivity for the mass ordering **assuming different values of the oscillation parameters followed by the fit at 90%**
- \cdot The largest ν_e appearance signal the highest **sensitivity to reject the inverted mass ordering - is for:**
	- **the higher values of** $\sin^2\theta_{23}$
	- values of $\delta_{CP} = \pi/2$

The mass ordering sensitivity

Conclusion: the difference between DATA and MC expectations is much smaller for upper-octant values of $\sin^2\theta_{23}$

L/E analysis @ Super - Kamiokande

- Atmospheric mixing contours
	- Normal ordering is assumed
	- **•See the poster by Thomas Wester: Neutrino oscillation analysis with Super-Kamiokande's highest-**

resolution events

ν appearance searches *^τ*

Octant effect on oscillations \rightarrow ν_{μ}) difference $P(\nu_{\mu} \to \nu_{e})$ difference $P(\nu_{\mu} \to \nu_{\mu})$ difference 0.5 0.5 0.8 0.4 0.4 $P(\sin^2\theta_{23} = 0.4) - P(\sin^2\theta_{23} = 0.6)$ 0.3 0.6 0.3 Difference $V_{\mu} \rightarrow V_{\mu}$ Difference 0.4 0.2 0.2 0.2 0.1 0.1 $COS\theta$ _z $\overline{0}$ Ω -0.2 -0.1 -0.1 -0.4 $-0.2 >$ $-0.2 \geq$ -0.6 -0.3 -0.3 -0.8 -0.4 -0.4 -0.5 -0.5 $10²$ $10²$ 10 10 E_v (GeV)

61

Assumptions:

- Normal ordering, $\delta_{CP} \simeq -\pi/2$,
- $\Delta m_{32}^2 \simeq 2.4 \cdot 10^{-3}$ eV²
- $sin^2\theta_{13} = 0.0220 \pm 0.0007$ from reactor measurements

Mass ordering in the data

Upward-going / downward going ratio in **multi-GeV e-like samples shows some excess** in mass ordering-sensitive bins

- SK geomagnetic compensation coil cables have failed in three locations.
- At two of locations, part of the coil was successfully bypassed to restore functionality. The other location is entirely underwater, resulting in the entire cable group being turned off.
- A 10-20% decrease in collection efficiency is observed for about 20% of PMTs in the barrel.
- Efficiency for detecting neutron capture on Gd has also decreased by about 3%.
- The physics impact can be compensated by calibration and simulation.
- The likely cause is corrosion of wire connections due to ionized water seeping in under heat shrink insulation.
- SK plans to install six new horizontal coils in summer 2024 to restore the geomagnetic field cancellation.

SK's geomagnetic compensation coil problems and countermeasures

Neutrons in atmospheric *ν* interactions

SK6 atmospheric neutrino reconstruction with neutrons

Sensitivity (SK6: 564.4 live-days)

Conclusion: MO sensitivity is improved by 21% with Gd, and by another 10% with new *Eν*reconstruction using neutron information.

π

66

