Status of the anion source CERN, 17 Dec 2024

Łukasz Kłosowski

Nicolaus Copernicus University in Toruń

Our goal

- A source of negatively charged ions
 - Controlled composition of the ion ensemble
 - Controlled energy, time characteristics, and geometry of the pulse
 - Long-lasting source
 - Compatible with the AEgIS main apparatus
 - compact
- The ions can be co-trapped with antiprotons (the same sign of the electric charge), and later be used for production of antiprotonic atoms

The device works!

- We can produce pulses of about 60 000 iodine anions in severalminute intervals
- We still can do better!
- Stable, long lasting source
- Repeatable results

Positive vs negative ions

cation

• Relatively easy to produce:

$$A + e^- \rightarrow A^+ + 2e^-$$

$$A + h\nu \rightarrow A^+ + e^-$$

• May be cooled optically, for example in a Doppler scheme

anion

• Attachment of an electron forbidden by the Energy and momentum conservation

$$A + e^- \rightarrow A^-$$

- Only one bound state optical cooling impossible
- 3-body interactions improbable due to vacuum conditions
- Electron dissociative attachment may be used:

$$AB + e^- \to A^- + B$$

A brief summary of the technique used

• Electron dissociative attachment inside a multi-segment linear Paul trap

$$I_{2} + e \rightarrow I + I^{-}$$
$$I_{2} + e \rightarrow I^{+} + I^{-} + e$$

- lodine:
 - Mass 127 a.m.u. (only one natural isotope)
 - Electron affinity 3.06 eV
 - The heaviest 2-atomic, homonuclear molecule
 - Solid at room temperature

FIG. 14. The resonance capture peak for the formation of I^- from iodine by electron impact.

Expected cross sections and final kinetic energies

The first idea of the source (2021)

temperature $[^{\circ}C]$	pressure [mbar]	temperature [°C]	pressure [mbar]
-90	$6.68 \cdot 10^{-23}$	10	$5.58 \cdot 10^{-2}$
-80	$9.42 \cdot 10^{-17}$	20	$1.85\cdot10^{-1}$
-70	$8.77 \cdot 10^{-13}$	30	$5.25\cdot10^{-1}$
-60	$5.21 \cdot 10^{-10}$	40	$1.32 \cdot 10^{0}$
-50	$5.82 \cdot 10^{-8}$	50	$2.98 \cdot 10^{0}$
-40	$2.18\cdot10^{-6}$	60	$6.16\cdot 10^0$
-30	$3.85\cdot10^{-5}$	70	$1.18 \cdot 10^{1}$
-20	$3.97\cdot10^{-4}$	80	$2.14 \cdot 10^{1}$
-10	$2.74 \cdot 10^{-3}$	90	$3.65 \cdot 10^{1}$
0	$1.39\cdot10^{-2}$	100	$5.95 \cdot 10^{1}$

Further idea: iodoform instead of iodine for safety reasons

$$I_{2} + e \rightarrow I + I^{-}$$

$$I_{2} + e \rightarrow I^{+} + I^{-} + e$$

$$CHI_{3} + e \rightarrow CHI_{2} + I^{-}$$

$$CHI_{3} + e \rightarrow CHI + I + I^{-}$$

$$CHI_{3} + e \rightarrow CHI + I_{2} + I^{-}$$

 $CHI_3 + e \rightarrow CH + 2I + I^-$

Design of the device

The linear Paul trap

Electron gun

Molecular beam source

Thermal shielding for the reservoir designed and built by Adam Linek (the driver not presented in the picture)

Silver mesh absorber of the iodine

Anion detector (spiraltron)

Anion detector (spiraltron)

Modifications: stray electron shielding

Custom-made HV power supplies

Pulsed electronics (Ortec) – borrowed from another experimental setup

Temporary voltage supply system

Cooling problem (no optical access to the anion)

Solution for the cooling problem

Loading and unloading the trap

Electron gun efficiency

Molecular beam intensity

Time resolution of the detection system

Conclusion: Our ion ensemble is squeezed to approximately 10 microseconds. This leads to estimation of our ions' temperature at at 6000 K (0.5 eV). This is not very exact estimation, but the order of magnitude should be correct.

Summary

- The device works
- By now, iodoform is used instead of iodine
- Temporary voltage supply system is used to be replaced by SINARA
- Transport to CERN: anytime we find it conveneient