

Formation of a forward beam of antihydrogen

The parabolic transfer potential

Antihydrogen detector: digitized ESDA

Scint.	$z_{cen}(\mathrm{cm})$	width (cm)	magnet	position	PM	T $\#$ and type	PM	T $\#$ and type
SC12	-96	20	$5\mathrm{T}$	Below	1	XP2020	2	XP2020
SC34	-76	20	$5\mathrm{T}$	Above	3	XP2020	4	XP2020
SC56	-45	10	$5\mathrm{T}$	Above	5	XP2020	5	XP2020
SC78	-35	10	$5\mathrm{T}$	Below	7	XP2020	8	XP2020
SC910	+39	10	$1\mathrm{T}$	Below	9	EMI	10	EMI
SC1112	+46	10	$1\mathrm{T}$	Above	11	XP2020	12	XP2020
SC1314	+59	10	$1\mathrm{T}$	Below	13	EMI	14	EMI
SC1516	+64	10	$1\mathrm{T}$	Above	15	\mathbf{EMI}	16	EMI
SC1718	+75	10	$1\mathrm{T}$	Below	17	XP2020	18	\mathbf{EMI}
SC1920	+79.5	10	$1\mathrm{T}$	Above	19	EMI	20	EMI
SC2122	+89	10	$1\mathrm{T}$	Below	21	EMI	22	EMI
SC2324	+96	10	$1\mathrm{T}$	Above	23	EMI	24	EMI

TABLE 1. AEgIS external scintillators and their respective PMT setup.

Scintillator array for MIP detection

- 4+8 x EJ-200 scintillator slabs
- PMT reading on both ends for coincidences
- Each PMT digitized at 250 Ms, 12 bit
- Software **coincidence** to reject PMT noise
- Amplitude cut to reject gamma background

The ESDA digitized acquisition chain in 2023

ESDA single slab, 2024 config

Standard setup

- A 50/50 splitter for each 24 PMT (8 PMT @5Tesla, 16 PMT @1Tesla)
- Splitter connected directly to PMTs output to minimize ringing due to impedence mismatch
- CAEN-digitized r/o: Other end acquired with 20 dB attenuation and CAEN 1720 250 Ms 12 bit digitizer
- SIS-discriminated r/o: two PMTs of the same slab connected to 50ns coincidence unit + SIS counter

SC1920 exception

- Standard splitter at both PMTs
- CAEN-digitized r/o as above
- No SIS-discriminated r/o on PMT20
- LeCroy-digitized r/o on PMT20: the second end of the splitter is acquired with 50/50 splitter by LeCroy 2.5 Gs 12 bit oscilloscope 'Captorius1'

Software trigger and event discrimination

Coincidence formation within the same slab

Coincidences formation

- AND on the single PMT events
- 50 ns coincidence window

List of coincident events

- Average time-of-arrival
- Time difference between PMTs
- Average deposited charge
- Average amplitude

Example: effect of coincidence formation and amplitude/charge cutting

ANTIPROTON/POSITRON SYNC

- The timing on the PMTDigi is stably 70.7 us
- Checked manually for sure more than 10/20 runs over the entire dataset
- Captorius1 statistics on positron stability says it's stable for all the runs with buncher on
- Stability analysis of the positron arrival on the target on PMTDigi

Calibration of antiproton timing

2023

Calibration of antiproton hitting the target by measuring the **Raising edge timing**: Temptative uncertainty around 100 ns

2023

LOOKING FOR ANTIHYDROGEN

A beautiful observation of antiprotons swinging

Hypothetical conclusion: time calibration procedure was off by us we were always sending positrons too early, i.e. with a forward boost

INFN

Evidence of some antihydrogen produced in 2023

All antihydrogen was hitting obstacles in the production region

Dataset	lonGrid	Setting	Comment
HbarLog154	OUT		No Ps
HbarLog155	OUT		No Ps
HbarLog156	OUT		No Ps
HbarLog157	OUT	2/3/4	No Ps
HbarLog158	OUT		No Ps
HbarLog159	YES		No Ps
HbarLog161	YES		No pbars
HbarLog163	YES	0 us	
HbarLog164	YES	-1 us	
HbarLog165	YES	-2 us	
HbarLog166	YES	-3 us	
		-4 us	
HbarLog167	YES		Centr. sep.
HbarLog168	YES		Centr. sep.
HbarLog170	YES		Centr. sep.

Analysis ToDo

- PMTDigi
 - → Discriminated events
 - Analog excess
- PCOEdge
 - Search for tracks
 - Analog excess
- Captorius 1
 - 1TMCP search for events
 - 1TMCP analog excess
- Captorius 3
 - UV amplitude & timing
 - Amount of e⁺ and Ps
 - SSPALS laser excit.
- Avantes
 - Calibration & IR bandwidth
- SIS
 - Antiprotons at Catch
 - Antiprotons at HD
 - Antiprotons in Swing
 - Hbar search?

RunLog161 – background (no pbars)

RunLog163 – very late antiprotons

RunLog164 – late antiprotons

RunLog165 – early antiprotons

RunLog166a – very early antiprotons

RunLog166b – even earlier antiprotons

60

- 21 events in 36 runs
- 0.6 events per run
- 40% det. Efficiency

.: 1.5 Hbar produced per run :.

- 45 events in 56 runs
- 0.8 events per run
- 40% det. Efficiency

.: 2.0 Hbar produced per run :.

RunLog165 – late antiprotons

SC1314, SC1516

SC2122, SC2324

9

10

RunLog166 – early antiprotons

SC1314, SC1516

SC2122, SC2324

MODELING

- 1. Generate Ps* trajectories according to know distributions
 - 1. Axially, Asym2Sigmoid
 - 2. Radially up, normal distribution without selection
 - 3. Radially side, normal distribution with laser selection
- 2. Rotate trajectories by angle theta in the lab frame
- 3. Compute v_{\perp} and motional electric field $F(v_{\perp})$
- 4. Compute Ps ionization rate with the n-dependent but sublevelaveraged Damburg and Kolosov formula
- 5. Sort each track travel distance from lifetime
- 6. Calculate ray-cylinder intersection, entrance and terminal points, and interaction length with plasma
- 7. Approx. uniform plasma density, compute Hbar formation probability from cross-section

$$\frac{\sigma_{\bar{H}}}{n^4} := (10^{-19} \,\mathrm{m}^2) \, \frac{1.2 + 0.1 \, k_v(n,v)^{-2}}{1 + (k_v(n,v)/1.84)^{18}} \,, \qquad k_v(n,v) := \frac{v}{v_{e^+}} = \frac{2 \, n \, v}{\alpha \, c} \,.$$

- 8. Sum all probabilities over Ps tracks to get the Hbar formation amount.
- 9. Generate Hbar trajectories and propagate until a collision occurs

N. Zurlo et al. (AEgIS collaboration), Hyperfine Interactions 240 (2019), 18

$$P(n,v_{
m rel},
ho,L_{
m int})=1-e^{-\sigma(n,v_{
m rel})\,
ho\,L_{
m int}},$$

Damburg and Kolosov

$$\Gamma_{n n_1 n_2 m} = \frac{E_{h_{P_s}}}{\hbar} \frac{(4R)^{2n_2 + m + 1}}{n^3 n_2! (n_2 + m)!} \\ \times \exp\left[-\frac{2}{3}R - \frac{1}{4}n^3 \frac{e a_{0_{P_s}}|\vec{F}|}{E_{h_{P_s}}} \left(34n_2^2 + 34n_2m + 46n_2 + 7m^2 + 23m + \frac{53}{3}\right)\right],$$
(5)
$$R = \frac{1}{e a_{0_{P_s}} \sqrt{E_{h_{P_s}}}} \frac{(-2E_{n n_1 n_2 m})^{3/2}}{|\vec{F}|}$$
(6)

 $N_{Ps^*} = 0.8 \cdot 10^5 N_{pbar} = 2.0 \cdot 10^6 L_p = 20 \text{ mm} d_p = 9.3 \text{ mm}$

Computed Hbar production rate: 2.6 per run

NEXT STEPS

What happens if we leave all as is, and we compress the pbars?

How much antihydrogen should we expect if we increase Rydberg level?

How much antihydrogen should we expect if we increase Rydberg level?

- Trick: oversample the number of produced antihydrogens, sorting on the same Ps* trajectories
- Compute collision with the target (rotated rectangle) and with the domain (cylinder)
- Define forward/backward fractions according to the traject. angle wrt the axis (10 cm / 88 cm)

How much antihydrogen should we expect if we go off axis?

Considered scenarios

Modeling of the plasma E x B is completely missing at the moment

