

AEGIS Collaboration meeting December 2024 Fredrik PG

Highly Charged Ions (HCIs)

- HCIs are atoms stripped of most or all their electrons.
- >Exhibit extreme electromagnetic properties:
 - Ideal for test of strong field QED
 - Enhanced sensitivity to nuclear structure (QCD)
- ➢ Radioactive HCIs have supressed decay:
- Electron capture no longer possible (Weak interaction studies)

Electroweak Decay Studies of Highly Charged Radioactive lons with TITAN at TRIUMF

by
Kyle G. Leach ^{1,*} □ 0,
Iris Dillmann ²,
Renee Klawitter ^{2,3},
Erich Leistenschneider ^{2,4} 0,
Annika Lennarz ² 0,
Thomas Brunner ^{2,5} 0,
Dieter Frekers ⁶,
Corina Andreoiu ⁷,
Anna A. Kwiatkowski ² and
Jens Dilling ²

RESEARCH BRIEFINGS 04 October 2023

Testing the limits of the standard model of particle physics with a heavy, highly charged ion

PAPER • OPEN ACCESS

Perspectives on testing fundamental physics with highly charged ions in Penning traps

K Blaum¹, S Eliseev^{2,1}, and S Sturm¹ Published 6 November 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd <u>Quantum Science and Technology, Volume 6, Number 1</u> <u>Focus on Quantum Sensors for New-Physics Discoveries</u> Citation K Blaum *et al* 2021 *Quantum Sci. Technol.* 6 014002

Article | Published: 29 January 2020

Coherent laser spectroscopy of highly charged ions using quantum logic

P. Micke , T. Leopold, S. A. King, E. Benkler, L. J. Spieß, L. Schmöger, M. Schwarz, J. R. Crespo López-Urrutia & P. O. Schmidt

<u>Nature</u> 578, 60–65 (2020) Cite this article

Traditional HCI formation at radioactive beam facilities:

High energy beam through stripper foil:

Electron beam ionization:

Fig. 2: Principle of operation of an EBIS

The life of an antiprotonic atom

Trapping and TOF spectroscopy of fragments

Capturing positive ions formed from antiproton annihilations

6

Animation by Jakub

Sample data during air leak campaign

Floor voltage scan with release from MCP side **Cold ions**

٠

V

TOF spectrum vs scintillator signal

Observation of a TOF signal vs antiproton annihilation events from nitrogen injection.

Identification of trapped ions formed from antiproton annihilation

- > TOF spectrum calibrated using e-, \bar{p} and H⁺.
- > lons trapped with m/q=2.0(1)
- Signal observed for low energy antiprotons <1 keV -> Antiproton energy too low for collissional ionisation.
- Expected annihilation fragments from GEANT4 simulations:¹²C⁶⁺, ¹⁰B⁵⁺, ⁶Li³⁺, ⁴He²⁺,..?

Argon campaigns 2024:

- 18 electrons -> 15000 eV required for full stripping.
- Mass = 40 amu
- Well studied in literature, confirmed full stripping from antiprotonic atom cascade.
- Nobel gas, no positively charged molecules.
- Greater trapping fragments

Gas injection procedure

Scan over antiproton storage time

Ionization of Helium and Argon by Very Slow Antiproton Impact

H. Knudsen,¹ H.-P. E. Kristiansen,¹ H. D. Thomsen,¹ U. I. Uggerhøj,¹ T. Ichioka,^{1,*} S. P. Møller,² C. A. Hunniford,³ R. W. McCullough,³ M. Charlton,⁴ N. Kuroda,⁵ Y. Nagata,⁵ H. A. Torii,⁵ Y. Yamazaki,^{5,6} H. Imao,⁶ H. H. Andersen,⁷ and K. Tökesi⁸

> ¹Department of Physics and Astronomy, University of Aarhus, Denmark ²Institute for Storage Ring Facilities, University of Aarhus, Denmark ³Department of Physics, Queens University Belfast, United Kingdom ⁴Department of Physics, University of Swansea, United Kingdom ⁵Institute of Physics, Komaba, University of Tokyo, Japan ⁶Atomic Physics Laboratory, RIKEN, (Saitama) Japan ⁷Niels Bohr Institute, University of Copenhagen, Denmark ⁸ATOMKI, Debrecen, Hungary (Received 17 March 2008; published 25 July 2008)

The total cross sections for single ionization of helium and single and double ionization of argon by antiproton impact have been measured in the kinetic energy range from 3 to 25 keV using a new technique for the creation of intense slow antiproton beams. The new data provide benchmark results for the development of advanced descriptions of atomic collisions and we show that they can be used to judge. for the first time, the validity of the many recent theories. 100

Normalized Intensity

 10^{-2}

spectrum (TOF). The spectra show clear peaks at the expected positions for He⁺, Ar⁺⁺, and Ar⁺, and show no other features except for a low and almost flat background of accidental coincidences.

> **Observed ionization is a result of highly** charged nuclear fragments in the trap.

Paper draft in circulation

Technique for the capture and spectroscopy of antiproton-nucleus annihilation fragments

November 2024 Argon campaign

- 1T MCP replaced -> Characterising new MCP signal, TOF calibration, reduced ringing?
- Refining technique, symmetric trap for removing microwells.
- Gathering statistics with Argon injection, refining spectrum for paper.
- Study pressure influence on signal.
- Vacuum recovery test and helium injection.

Vacuum

Gas injection

Trap potential study using antiprotons

Antiproton TOF calibration

Could the antiproton calibration script have damaged the MCP?

Gas injection timeline

Vacuum recovery time

Helium collissional ionization signal

Helium signal identified

Helium signal seen in data from 2023

Old data can now be better understood

Overview of HCI campaigns

2023

- Air leak campaign: (3 weeks)
- First postive ion signal.
- Techniques developed for manipulating trapped ions.
- Barrier scan, Multi-step, MR-TOF procedure.
- Identifying the energy of the TOF components.
- Nitrogen campaign: (36h):
- Nitrogen injection.
- Confirming HCI formation from nitrogen.

• Argon campaign: (2w):

- Needle valve installed for controlled injection
- Argon injected, antiproton energy loss measurements

2024

- Electron cooling of antiprotons with gas.
- HCI Argon ions identified

• Argon/Helium campaign: (3d):

- Trap configuration better understood.

- Collissional ionization origin of helium signal confirmed.

End of the dirty injection...

So what is next?

Antiproton-Helium capture cross-section

Step 1: Capture and cool antiprotons near HV1

Step 2: Exposing antiprotons to gas jet

How much gas is needed?

Step 3: Cooling of HCIs in trap

electrode

Step 4: Moving cold HCIs from HV1 to C-electrodes

Step 3: Transport and ejection for TOF spectroscopy

1T trap

Outlook: Towards the laser triggered synthesis

(4) HCI+ $\overline{p}A+$ $\overline{p}A*$ $\overline{p}A+$ $\overline{p}A+$ $\overline{p$

HCIs can be further cooled and studied in trap

- Benefits: No laser needed
- Neutral gas no need to worry about overlapping plasmas
- Orders of magnitude cleaner, 0.1ng/ antiproton shot.
- CS can be enhanced by exciting atoms to rydberg states,
- Limitation, only works with gases
- Laser Ablation? Local pressure after ablation?

Clean injection approaches

• Anion source

- Alternative?
- Pulsed gas injection
- Laser ablation

Summary and outlook:

Collissonal cooling on buffer gas 2e-12 mbar in sun region:

Electron cooling script working

Capture cross-section

Study of new trap

Cold antiprotons observed

Low energy antiproton interactions

What could result in the formation of m/q=2 from nitrogen?

Overview of the fragment capture procedure

Helium interaction with antiprotons

RGA measurment

He2+: 1.8 e -18 cm2

FIG. 1 (color online). (a) Cross sections for single ionization of helium by antiproton impact. Filled squares: TDCC calculations; filled diamonds: calculations of Schultz and Krstić [5]; filled and open circles: experimental measurements of [4,15]. (b) Cross sections for double ionization of helium by antiproton impact. Filled squares: TDCC calculations; crosses: calculations of Diaz *et al.* [10]; filled circles: experimental measurements of [4].

FIG. 2 (color online). Evolution of the ionization probability, $\mathcal{P}(E, b = 0.5a_0)$, for a 50 keV antiproton collision with a helium atom as a function of the impacting ion distance. Upper panel: single ionization probability summed over all partial waves. Lower panel: double ionization probability. The helium atom is located at the origin of the collision system ($d_0 = 0$).

tioned at $d_0 = 0a_0$), and then tend to a constant value

Outlook

Suggested measurements for 2024

Antiprotonic atom spectroscopy at AEGIS

- Continuing LEAR era measurments: Plenty of physics cases!
- Teaching us the procedure for antiprotonic atom x-ray spectroscopy.

Summary of outlook:

- Continued development of trapping procedure and identification of HCI fragments from antiproton-atom interaction using gas injection (the dirty method).
- First x-ray spectroscopy of antiprotonic atoms at AEGIS (initially on target). Characterizing background for spectroscopy inside the trap. Many 'simple' physics cases.
- (Triggered formation of antiprotonic atoms through target ablation near trapped cold antiprotons?)
- Purchase of laser systems for photodetachment and Rydberg excititatation: Triggered formation of antiprotonic atoms with cotrapped anions.

Goal: Laser triggered formation of antiprotonic atoms (laser/x-ray/auger spectroscopy) and trapping and cooling of resulting HCI fragments.

Noise filtering

Pbar trapping voltage vs MCP signal

Fast TOF component?

Isolating peak with 250 ns gate:

Ion time changes the 7+ population

The other peaks do not change significantly with time

Table 2: Ideal production conditions for ions of different isoelectronic sequences. Given are the ionization factor $j_e \tau$ (e⁻ cm⁻²), the optimal electron beam energy (keV) and the required ionization time (ms or s) for an assumed ionization factor of $j_e \tau = 3 \times 10^{22}$ e⁻ cm⁻².

Sequence	Neon	Argon	Krypton	Xenon	Gold	Uranium
	Z = 10	Z = 18	Z = 36	Z = 54	Z = 79	Z = 92
Atom	Ne^{10+}	Ar^{18+}	Kr ³⁶⁺	Xe ⁵⁴⁺	Au ⁷⁹⁺	U^{92+}
fully	$2 imes 10^{21}$	$2 imes 10^{21}$	$3 imes 10^{22}$	$2 imes 10^{23}$	$6 imes 10^{23}$	$2 imes 10^{24+}$
ionized	3	9	40	80	180	300
	7 ms	67 ms	1 s	7 s	20 s	67 s

Time-of-flight calibration using Pbars

Peak at m/q=2 Fully stripped nitrogen identified?

Collissional ionization with antiprotons? 3000 eV is required to form N⁷⁺ from the N₂ molecule

Could electrons accelerated by HV electrodes strip nitrogen?

Simulation by Bharat using CST in progress...