
traccc
Integrating the Alpaka framework

Ryan Cross
SWIFT-HEP08 + ExaTEPP

2024/11/11

Overview

This talk will cover:

1. traccc.

2. Cross-Platform Abstraction Libraries.

3. Where We Are

4. Current Work

5. What comes next?

1 / 15Ryan Cross - 2024/11/11

ACTS is a generic, experiment

independent framework/software toolkit,

written in C++. Through it, you can get

algorithms for track reconstruction that

can be used in any experiment, agnostic of

any technical details (detector tech, design

and event processing framework).

It has been designed in a thread-safe

manner, with support for parallel code

execution and optimised data structures

for speeding up the many linear algebra

operations used throughout the code base.

A Common Tracking Software

2 / 15Ryan Cross - 2024/11/11

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

3 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

traccc specifically, is aiming to establish a sensible event data model

and algorithms that are able to exploit parallelisation architecture,

whilst relying heavily on the other projects.

3 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

Cross-Platform Abstraction - What?

There are a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

4 / 15Ryan Cross - 2024/11/11

Cross-Platform Abstraction - What?

There are a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

4 / 15Ryan Cross - 2024/11/11

Cross-Platform Abstraction - What?

There are a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

4 / 15Ryan Cross - 2024/11/11

Cross-Platform Abstraction - What?

There are a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

alpaka is a header-only C++ 20 abstraction library for accelerator development. It aims to provide

performance portability across a range of accelerators through the abstraction of the underlying levels of

parallelism. Support CUDA, OpenMP, std::thread, TBB, HIP and OpenAcc.

4 / 15Ryan Cross - 2024/11/11

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

5 / 15Ryan Cross - 2024/11/11

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

Run the jobs in parallel:

queue.submit(job, configuration, items);

queue.wait();

5 / 15Ryan Cross - 2024/11/11

Why alpaka?

I've just outlined three projects that support the "write once, support many" paradigm, and both SYCL and

Kokkos are already implemented in traccc, with differing levels of functionality. So why a third?

alpaka was chosen as a possible candidate for a few reasons:

Simplicity: alpaka is a lightweight, header-only library, which makes integration into traccc very easy, as

well as it being written in the same modern C++20 as traccc/acts.

Familiarity: The alpaka abstraction model is very similar to the CUDA grid-blocks-thread model, making

writing code for alpaka simple, and familiar for those with CUDA experience, whilst also providing a CPU

and non-CUDA based implementation.

Community Support: alpaka has been used extensively at CMS, including in cms-sw and their HLT

achieving performance close to that of the native CUDA codebase, from a single source code that can be

utilised on many devices.

6 / 15Ryan Cross - 2024/11/11

https://github.com/cms-sw/cmssw/pull/40465
https://indico.cern.ch/event/1184802/contributions/5096742/subcontributions/400890/attachments/2539901/4372182/swifthep_cmsgpu.pdf

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

7 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/300

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm was a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

7 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://github.com/acts-project/traccc/pull/431

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm was a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My older slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better overview

of that work, as well as some more basic comparisons of Alpaka vs CUDA.

7 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm was a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My older slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better overview

of that work, as well as some more basic comparisons of Alpaka vs CUDA.

7 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

8 / 15Ryan Cross - 2024/11/11

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged as part of PR (#451) last year.

8 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/451

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged as part of PR (#451) last year.

8 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/451

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged as part of PR (#451) last year.

8 / 15Ryan Cross - 2024/11/11

https://github.com/acts-project/traccc/pull/451

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

9 / 15Ryan Cross - 2024/11/11

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Validate the full tracking chain. The last slides I showed took us up to the point where we had throughput

performance for almost the full chain, but not the final track finding and fitting steps.

9 / 15Ryan Cross - 2024/11/11

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Validate the full tracking chain. The last slides I showed took us up to the point where we had throughput

performance for almost the full chain, but not the final track finding and fitting steps.

Improving the robustness of the current code. Whilst the current code works well enough and compares

favourably to the CUDA code, we still are not able to get a complete understanding of the multi-threaded

performance of Alpaka, due to various issues.

9 / 15Ryan Cross - 2024/11/11

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Validate the full tracking chain. The last slides I showed took us up to the point where we had throughput

performance for almost the full chain, but not the final track finding and fitting steps.

Improving the robustness of the current code. Whilst the current code works well enough and compares

favourably to the CUDA code, we still are not able to get a complete understanding of the multi-threaded

performance of Alpaka, due to various issues.

Verifying Alpaka with HIP. When the main draw of using an abstraction library is multi-vendor support,

that support needs testing and any HIP-specific changes implementing.

Each of these pieces of work are at different stages of completion, and I'll go into a touch more detail on them

each now.

9 / 15Ryan Cross - 2024/11/11

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

We've hit a lot of issues on this path, mostly based around Thrust, which is a C++ parallel algorithm

library...but written by Nvidia for CPUs or CUDA.

10 / 15Ryan Cross - 2024/11/11

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

We've hit a lot of issues on this path, mostly based around Thrust, which is a C++ parallel algorithm

library...but written by Nvidia for CPUs or CUDA.

Thrust is used quite heavily in a few places, usually for sorting and filtering of arrays of data on the GPU.

There is a potential solution though, which is the rocThrust library, which should work on AMD GPUs.

However, we have hit a lot of issues in getting the library to be picked up and used throughout traccc.

One of the complications is that Thrust is not just used in traccc, but also in part in detray, vecmem and

more. That means any solution we come up with either needs to be duplicated across a few repos, or a fix

needs to be done in such a way that it is picked up and used automatically by the downstream projects.

10 / 15Ryan Cross - 2024/11/11

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

We've hit a lot of issues on this path, mostly based around Thrust, which is a C++ parallel algorithm

library...but written by Nvidia for CPUs or CUDA.

Thrust is used quite heavily in a few places, usually for sorting and filtering of arrays of data on the GPU.

There is a potential solution though, which is the rocThrust library, which should work on AMD GPUs.

However, we have hit a lot of issues in getting the library to be picked up and used throughout traccc.

One of the complications is that Thrust is not just used in traccc, but also in part in detray, vecmem and

more. That means any solution we come up with either needs to be duplicated across a few repos, or a fix

needs to be done in such a way that it is picked up and used automatically by the downstream projects.

Recently, Fabrice Le Goff has started working on EFTracking, specifically on AMD GPUs performance with

traccc. Their work (from my understanding) is not Alpaka or similar specific, but the hope is that any

solution around Thrust should work for multiple approaches, so we can hopefully work together to reach a

sensible result.

10 / 15Ryan Cross - 2024/11/11

Alpaka Robustness Testing

That leads nicely into to improving the robustness of the Alpaka code.

Right now, all the code shown works and runs for many 100s of events, but there is intermittent memory

access issues, at least in the Alpaka-CUDA version.

11 / 15Ryan Cross - 2024/11/11

Alpaka Robustness Testing

That leads nicely into to improving the robustness of the Alpaka code.

Right now, all the code shown works and runs for many 100s of events, but there is intermittent memory

access issues, at least in the Alpaka-CUDA version.

Debugging of these errors has been on-and-off over the past few months, but I've managed to narrow it down

to a single file, and the error only occurs in cases where multiple events are run in sequence, which certainly

points towards a certain class of memory errors.

I likely just need a few days to do a deep-dive on the debugging and try and check the state of all the variables

going into the seeding code.

11 / 15Ryan Cross - 2024/11/11

Track Finding + Fitting

At the previous SWIFT-HEP meeting, I had implemented algorithms up to the point of having Prototrack

objects.

I have since ported over the remaining bits of the CUDA code, and have a complete tracking chain written

fully in Alpaka.

This track finding and fitting code did come with its own set of challenges:

12 / 15Ryan Cross - 2024/11/11

Track Finding + Fitting

At the previous SWIFT-HEP meeting, I had implemented algorithms up to the point of having Prototrack

objects.

I have since ported over the remaining bits of the CUDA code, and have a complete tracking chain written

fully in Alpaka.

This track finding and fitting code did come with its own set of challenges:

The track finding and fitting code is the place (at least in traccc) that most heavily uses Thrust as part of its

algorithms. That doesn't mean much for the CUDA-Alpaka version, but may be a pain-point going

forward.

12 / 15Ryan Cross - 2024/11/11

Track Finding + Fitting

At the previous SWIFT-HEP meeting, I had implemented algorithms up to the point of having Prototrack

objects.

I have since ported over the remaining bits of the CUDA code, and have a complete tracking chain written

fully in Alpaka.

This track finding and fitting code did come with its own set of challenges:

The track finding and fitting code is the place (at least in traccc) that most heavily uses Thrust as part of its

algorithms. That doesn't mean much for the CUDA-Alpaka version, but may be a pain-point going

forward.

Some of the more sophisticated objects / data-structures in these algorithms need a bit of massaging to

convince Alpaka that they are is_trivially_copyable. This isn't difficult, just a trait, but a bit of a pain

when developing to spot.

12 / 15Ryan Cross - 2024/11/11

Track Finding + Fitting

At the previous SWIFT-HEP meeting, I had implemented algorithms up to the point of having Prototrack

objects.

I have since ported over the remaining bits of the CUDA code, and have a complete tracking chain written

fully in Alpaka.

This track finding and fitting code did come with its own set of challenges:

The track finding and fitting code is the place (at least in traccc) that most heavily uses Thrust as part of its

algorithms. That doesn't mean much for the CUDA-Alpaka version, but may be a pain-point going

forward.

Some of the more sophisticated objects / data-structures in these algorithms need a bit of massaging to

convince Alpaka that they are is_trivially_copyable. This isn't difficult, just a trait, but a bit of a pain

when developing to spot.

On the better side though, this is the end of the chain, so comparing between CUDA, CPU and Alpaka is

now much more intuitive. An issue early on was that comparing the spacepoints or similar is very abstract,

and also difficult due to the numbers of spacepoints in an event. Whereas comparing tens of tracks is easily

doable in an event display.

12 / 15Ryan Cross - 2024/11/11

Some Quick Comparisons

A little while back, I adapted my LArTPC event display to work with traccc / detray, such that I could

compare the reconstruction performance in real-time. Here are a few comparisons between the CUDA and

Alpaka produced states:

CUDA Spacepoints

13 / 15Ryan Cross - 2024/11/11

https://crossr.github.io/HepEVD/
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json

Some Quick Comparisons

A little while back, I adapted my LArTPC event display to work with traccc / detray, such that I could

compare the reconstruction performance in real-time. Here are a few comparisons between the CUDA and

Alpaka produced states:

CUDA SpacepointsAlpaka Spacepoints

13 / 15Ryan Cross - 2024/11/11

https://crossr.github.io/HepEVD/
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json

Some Quick Comparisons

A little while back, I adapted my LArTPC event display to work with traccc / detray, such that I could

compare the reconstruction performance in real-time. Here are a few comparisons between the CUDA and

Alpaka produced states:

CUDA SpacepointsAlpaka SpacepointsCUDA Tracks

13 / 15Ryan Cross - 2024/11/11

https://crossr.github.io/HepEVD/
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json

Some Quick Comparisons

A little while back, I adapted my LArTPC event display to work with traccc / detray, such that I could

compare the reconstruction performance in real-time. Here are a few comparisons between the CUDA and

Alpaka produced states:

CUDA SpacepointsAlpaka SpacepointsCUDA TracksAlpaka Tracks

13 / 15Ryan Cross - 2024/11/11

https://crossr.github.io/HepEVD/
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json
https://crossr.github.io/HepEVD/?data=https://gist.githubusercontent.com/CrossR/43c09f8f4b9f731a4a98f3abc9b945db/raw/89055476732f7beee89d49f90b89d309ee5ba3db/eventDisplayInfo_combined.json

What is next?

Few things to do:

Continue with the three mentioned bits of work.

14 / 15Ryan Cross - 2024/11/11

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

14 / 15Ryan Cross - 2024/11/11

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

Extend the testing and verifying work once HIP is working, to ensure that CUDA and HIP continue to

work.

14 / 15Ryan Cross - 2024/11/11

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

Extend the testing and verifying work once HIP is working, to ensure that CUDA and HIP continue to

work.

Finally, more in-depth benchmarking of the Alpaka implementation, to help understand if / where

bottlenecks are, and if there is anything in our Alpaka code that needs improving.

14 / 15Ryan Cross - 2024/11/11

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

Extend the testing and verifying work once HIP is working, to ensure that CUDA and HIP continue to

work.

Finally, more in-depth benchmarking of the Alpaka implementation, to help understand if / where

bottlenecks are, and if there is anything in our Alpaka code that needs improving.

Further exploitation of Alpaka. We've still not really done any testing with Intel GPUs (which may not

really be an issue with the current GPU landscape...), but we should try to use every back-end we get from

Alpaka.

14 / 15Ryan Cross - 2024/11/11

Conclusion

In Conclusion:

traccc is a R&D effort as part of the ACTS project, working on exploiting GPUs and other accelerators to

speed up tracking across a range of experiments.

As part of that, many different acceleration abstraction libraries have been implemented, with alpaka being

the newest.

alpaka has good support already in HEP, and its parallelisation model make it a strong candidate for being

the general purpose abstraction library.

This talk gives a brief overview of the already completed work porting algorithms to utilise Alpaka in traccc.

We are now at the point of having basically the full tracking chain of algorithms implemented in Alpaka,

allowing direct comparison to the CPU and CUDA versions.

More work in ongoing to verify alpaka with non-CUDA targets and improve the robustness of the alpaka

implementation.

15 / 15Ryan Cross - 2024/11/11

traccc
Integrating the Alpaka framework

Ryan Cross
SWIFT-HEP08 + ExaTEPP

2024/11/11

Backup Slides

15 / 15Ryan Cross - 2024/11/11

