
111 August 2022Sam Eriksen

SWIFT-HEP
WP5 Analysis Systems
WP1 Data Management

Sam Eriksen & Timothy Noble

12th November 2024

Overview

• WP5 (Analysis Systems)
• overview + roadmap
• Current progress in WP5
• Future for WP5

• WP1 (Data + workflow management)
• overview
• Current progress in WP1
• Future for WP1

Previous updates
- March 2024
- November 2023
- September 2023
- May 2023
- March 2023
- February 2023 2

https://indico.cern.ch/event/1366954/contributions/5871404/attachments/2828000/4940987/2024_04_SWIFT-HEP_Meeting.pdf
https://indico.cern.ch/event/1324606/contributions/5639228/attachments/2757250/4800888/2023_11_22_SWIFT-HEP_Meeting.pdf
https://indico.cern.ch/event/1325046/contributions/5575746/attachments/2724511/4734462/2023_09_29_SWIFT-HEP_monthly_update.pdf
https://indico.cern.ch/event/1290054/contributions/5420864/attachments/2654888/4597700/SE_SWIFT-HEP_monthly_update_May2023.pdf
https://indico.cern.ch/event/1215829/contributions/5306513/attachments/2620665/4530829/SWIFT-HEP_March2023.pdf
https://indico.cern.ch/event/1249939/contributions/5281648/attachments/2599865/4488840/SE_25Feb2023_2.pdf

WP5: Analysis Systems

WP5: Analysis Systems
Run analysis workloads optimally on

distributed resources

511 August 2022Sam Eriksen 512 November 2024Sam Eriksen & Timothy Noble

Analysis Anatomy

data

Task Task Task

data

Task Task

data

Task

data

New idea/extension of

existing work

Publication

create/modify

code

Run analysis on

laptop/cluster/grid

Understand

results

New ideas for

improvement,

mistakes identified, or

updates

One cycle as
short as a day
or as long as a
month

See talk by Luke Kreczko for some BIG Picture

https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

611 August 2022Sam Eriksen 612 November 2024Sam Eriksen & Timothy Noble

Analysis Anatomy

data

Task Task Task

data

Task Task

data

Task

data

WP1

Analysis step
output

Data lake

DIRAC

WP5

caching

WP5 in a nutshell:

Run analysis workloads optimally** on distributed (GridPP) resources

** balanced between user-experience and computing efficiency

711 August 2022Sam Eriksen 712 November 2024Sam Eriksen & Timothy Noble

WP5: Roadmap

Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

More detailed slides

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://docs.google.com/presentation/d/1hIwuAaIavxmtL0ckPLyLLw3b4Csuya2lUtUKhK82JQw/edit#slide=id.g12a7c0b9631_0_7

811 August 2022Sam Eriksen 812 November 2024Sam Eriksen & Timothy Noble

WP5: Roadmap

1
Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Caching at

analysis step

level

1

2

3

4

• Add extension to dask

• Dask is able to parallelize any python code

• Add the ability to save output after dask instance has closed

• Avoid having to re-run analysis steps

• Persistent caching

• E.g. Let some stages run on GPUs

See talk by Luke Kreczko for some future planning

https://github.com/SWIFT-HEP/dask-dirac
https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

Where did we leave things
at the last workshop

1011 August 2022Sam Eriksen 1012 November 2024Sam Eriksen & Timothy Noble

Where we left things last time

• Reliable dask-DIRAC interface
• Multi-site submission / fine control

possible on distribution of workers
• Integrated with CMS AGC

Dask to DIRAC interface (dask-dirac)

Local workers
cluster = LocalCluster()
PBS
cluster = PBSCluster()
Dirac workers
cluster = DiracCluster()

https://github.com/SWIFT-HEP/dask-dirac

1111 August 2022Sam Eriksen 1112 November 2024Sam Eriksen & Timothy Noble

Where we left things last time

• Interact with diracdev StorageElement via
HTTP + x509

• gfal underneath
• Painful and wanted to move away from
• RUCIO via tokens was ideal

Connect to data lake

Caching at analysis step level

• Began looking at intermediate
result caching using scheduler
plugins

• Allows for tasks to be run
when a worker
connects/disconnects or
transitions (e.g. from running
to memory) a job

• Idea: perform check (ideally via
RUCIO) if result exists before a
task starts

What’s happened since the
last workshop

1311 August 2022Sam Eriksen 1312 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

• Wanted to communicate with RUCIO via REST-API with tokens

o Able to interact with RUCIO, but only with x509

o Tokens generated from the OIDC-Agent and Rucio at least with the IRIS-IAM varied, to the
point where Rucio would not accept the OIDC-Agent tokens. Investigation underway in
association with James Walder from SKAO (Full token stack Rucio instance)

o Token Authentication in Rucio is being redesigned by a token auth SIG

• We’ve parked progress on this until Tim has investigated further

Connect to data lake

1411 August 2022Sam Eriksen 1412 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

What have we been focusing on

Initial idea; dask plugins

Scheduler Plugins
- Allows you to run custom Python code on scheduler when certain

things happen
- Example;

- Scheduler checks if output exists; if exists, load and don’t run job, else, run job as normal- Workers send all data back to Scheduler which then perform ‘saves’ - Essentially intercepts result before it’s passed to the user

Worker Plugin
- Allows you to run custom Python code on all workers at certain

event in the worker’s lifecycle (such as when a process finishes)
- Example;

- Workers check if output exists; if exists, load and don’t run job, else run job as normal
- In this case, workers interact with storage

Note
- Dask already does caching which does similar to the above, but

we want persistency between dask sessions
- There’s also the option for scheduler and worker plugins together

https://distributed.dask.org/en/stable/plugins.html

1511 August 2022Sam Eriksen 1512 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Initial idea; dask plugins

Worker Plugin – where did we get to
- Created examples to explore what information we can get from

the worker at each stage
- Created worker plugin to show what in the worker directory

Problem
- This is only done when the worker is killed (or the plugin

removed)
- Limited by access to analysis step information / would require

interrupting the processes
- Very difficult to alter task graph on the fly

Caching at analysis step level

https://distributed.dask.org/en/stable/plugins.html

1611 August 2022Sam Eriksen 1612 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Initial idea; dask plugins

Scheduler Plugin – where did we get to
- Created examples to explore what information we can get from

the scheduler at each stage
- Created example to check if a task (via hash) had already been

run (in backup)

Workflow would be;
- Some kind of combination of scheduler and worker plugin
- Access task hash, check if it exists, and then replace with

loading or saving data

Caching at analysis step level

https://distributed.dask.org/en/stable/plugins.html

1711 August 2022Sam Eriksen 1712 November 2024Sam Eriksen & Timothy Noble

deterministic hash test

What have we been focusing on

Initial idea; dask plugins

Problems with this approach
- Very hard to manipulate task graphs in this approach; hashes

associated with tasks are only semi-deterministic -> change
between dask sessions for the same code

- Very difficult to access individual steps in a task graph. Very
coarse; approach was more limited to final task.

Solution
- Work on calculating hash that is independent of scheduler state

and without plugins

Caching at analysis step level

https://distributed.dask.org/en/stable/plugins.html

1811 August 2022Sam Eriksen 1812 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Ways to interact with dask submission

- client.get
- client.map (this is what CMS AGC uses)
- client.submit
- client.compute

- Find a common area where we can intercept the task graph and manipulate it
- Found _graph_to_futures* where we have access to the full graph

*Actually, started with collections_to_dsk which only works with client.compute and developed a lot of this there before changing to _graph_to_futures

Caching at analysis step level

Taken from L.Gray PyHEP.dev 2023

https://distributed.dask.org/en/latest/_modules/distributed/client.html#Client.submit
https://distributed.dask.org/en/latest/api.html#distributed.Client.collections_to_dsk
https://indico.cern.ch/event/1234156/contributions/5510691/attachments/2688761/4668070/LindseyIntro_PyHEP_25072023.pdf

1911 August 2022Sam Eriksen 1912 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Scenarios to take into account for
a demonstrator

1. Nothing changes -> read & return Cache(Y)

2. A changes -> read Cache(D), calculate the rest

3. D changes -> read Cache(C, B), calculate the rest

4. Y changes -> read Cache(C, D), calculate Y

Requires

1. Probing task graph to work out output / input

2. Checking storage area for if it exists

3. Insert loading / saving stages into graph

Caching at analysis step level

2011 August 2022Sam Eriksen 2012 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Scenarios to take into account for a
demonstrator

1. Nothing changes -> read & return Cache(Y)

2. A changes -> read Cache(D), calculate the rest

3. D changes -> read Cache(C, B), calculate the rest

4. Y changes -> read Cache(C, D), calculate Y

func load()

Case 3

Case 2

Caching at analysis step level

func load()func load()

2111 August 2022Sam Eriksen 2112 November 2024Sam Eriksen & Timothy Noble

What have we been focusing on

Development State
- We’ve created a new dask client (DiracClient) which adds

persistent caching functionality

Additional functionality in the works/what needs more thought;

- Changeable location of Persistent Cache; want RUCIO and local
options at the very least

- More work is needed to be compatible with CMS ACG; should wait for
coffea-2024

- Default is to cache everything, good option to have but likely no ideal

Caching at analysis step level

For task in Tasks:
hash = calculate_task_hash(task)
hash_found = check_storage(hash)
if hash_found:

task = load_from_storage(hash)
else:

task = task + write_to_storage(hash)

https://github.com/SWIFT-HEP/dask-dirac/blob/main/src/dask_dirac/_dask.py#L116

2211 August 2022Sam Eriksen 2212 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

What have we been focusing on

Case if no cache entries

have been found

Case if cache b and cache c

are found

Example of what the output is from

simple 5-function graph

Path 1

first time running

Path 2

second run, but function d has been

edited

Path 2

Path 1

2311 August 2022Sam Eriksen

Summary and
plan going

forward

- We have a dask-dirac interface
- Workers are split across sites
- Effectively splits up work across

these sites

- We have been looking at task
graph manipulation

- Found entry point giving fine-grain
access to a graph

- Implemented caching that persists
between dask sessions

- Avoid rerunning tasks where result
exists

- Where are we going
- Awaiting tokens
- Awaiting ACG update -> coffea.2024

23

Dask to DIRAC

interface

(dask-dirac)

Connect to

data lake

(caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API

FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf

WP1: Data Management

WP1: Data Management
Optimise the heterogeneous storage

infrastructure across the UK

2611 August 2022Sam Eriksen 2612 November 2024Sam Eriksen & Timothy Noble

WP1: Data Management Overview

• Deploy a UK based prototype data lake
o Core sites
o S3 sites
o State-less storage

• Generate metrics for comparison of current to
improvements made

• Implement Quality of Service behaviour and information

in Rucio
o Develop Rucio to expand the levels of service it provides
o Create new behaviours in Rucio to enable improved data access

• Produce site recommendations on how to optimise data
access and stateless storage

• Setup and test SSD storage endpoints to test and
develop fast storage endpoints

Rucio

Monitoring

Sites

QoS Behavior

WP5

2711 August 2022Sam Eriksen 2712 November 2024Sam Eriksen & Timothy Noble

Data Management developments

• Tim has redesigned and expanded upon previously shown
monitoring solution to be production-ready (Deployed for
astronomy experiment LSST), deployed with OpenSearch.

• made these tools available to other communities by contributing deployment back
to Rucio repositories (Rucio workshop talk)

• Takes 3 different data streams
from Rucio, to be visualised
in Grafana.

• Minimal design to ensure
easy to maintain and deploy

• Allows for quantification of
future developments

https://indico.cern.ch/event/1366954/contributions/5749554/attachments/2779191/4939525/TNoble%20Swift-HEP%20update.pdf
https://indico.cern.ch/event/1343110/contributions/6096503/

2811 August 2022Sam Eriksen 2812 November 2024Sam Eriksen & Timothy Noble

Data Management development plans

• Investigation of ServiceX (or other tools to
optimise data access for analysis)

o Developed by IRIS-HEP

o Software that sits between the Storage and
Analysis Facility (close to storage), and extracts a
subset of data columns from whole files – rather
than moving the whole file

o Reduces the networking needs from storage to
analysis

▪ User requests a subset of data from file(s)

▪ ServiceX queries Rucio for files

▪ Job started in Kubernetes cluster to extract needed files
and create a new one

▪ Publish the file for full analysis job to use

User

ServiceX

REST

Kubernetes

Publish

https://iris-hep.org/projects/servicex.html

2911 August 2022Sam Eriksen 2912 November 2024Sam Eriksen & Timothy Noble

Data Management development plans

• Fast Storage

o Sites provision Storage by Capacity, but not
throughput or access rates

▪ Issues will arise with larger data files and increased
required data rates where storage endpoints
provision more storage, but throughput does not
scale at the same rate

o Further coordination with Core Rucio team to
develop Quality of Service to better serve Fast
storage

o Using file popularity to move data between Fast
and Disk storage endpoints to ensure read/write
needed for analysis

FTS

Site A

HDD

Site A

Fast
Site B

Site A

Analysis

3011 August 2022Sam Eriksen

Data management
summary and

future plan

- Deployed Robust monitoring at RAL for
SWIFT-HEP and at Stanford for LSST
(improvements to one feed into the other)

- Approaching data management from
Software and Hardware utilisation

- Further integrations with the Analysis
facility to enable better data access

- Will develop Rucio to investigate the
prioritization of fast storage as more fast
storage pools are available in the UK now

- Will work with CERN liaisons to test
deployment ServiceX at RAL to test data
access improvements

30

WP5

Analysis

facility

Sites with

FAST QoS

ServiceX

Robust

Monitoring

3111 August 2022Sam Eriksen

Questions?

BACKUP

3311 August 2022Sam Eriksen 3312 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

What have we been focusing on

What do we want to demonstrate
- Imagine a complex task that you want to run.

- If you know you are going to have to run this multiple times, but are

only modifying one of the functions, you can think of a few ways to

reduce the reprocessing;

- Most obvious would be to break up the graph and submit each task

separately and save the outputs, and if you are rerunning, load the bits

you haven’t changed.

- We want that to automatically happen when you submit something.

3411 August 2022Sam Eriksen 3412 November 2024Sam Eriksen & Timothy Noble

Modifying a task graph: Practical example

Caching at analysis step level

This is what we have to play with;
Task is;
- Calculate hash
- Check if hash exists somewhere
- If exists; replace with load
- If doesn’t; add save

hash(‘func_b’, hash(‘func_a’, 2))

hash(‘func_e’, hash(‘func_d’, hash(‘hash_c’, 2)), hash(‘func_b’, hash(‘func_a’, 2)))

Same as above

Same as above

hash(‘func_d’, hash(‘func_c’, 2))

3511 August 2022Sam Eriksen 3512 November 2024Sam Eriksen & Timothy Noble

Modifying a task graph: Practical Example

Caching at analysis step level

3611 August 2022Sam Eriksen 3611 August 2022Sam Eriksen

Practical Example

Caching at analysis step level

3711 August 2022Sam Eriksen 3711 August 2022Sam Eriksen

Practical Example

Caching at analysis step level

3811 August 2022Sam Eriksen 3811 August 2022Sam Eriksen

Practical Example

Caching at analysis step level

3911 August 2022Sam Eriksen 3912 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

Worker Plugin example

Description
- When worker is shutdown/killed or the plugin is disconnected,

the directory path and contents are displayed

4011 August 2022Sam Eriksen 4012 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

Worker Plugin example

Description
- When worker is transitioning between states, the state is

printed and the number of transitions are counted

4111 August 2022Sam Eriksen 4112 November 2024Sam Eriksen & Timothy Noble

Caching at analysis step level

Scheduler Plugin example

Description
- Remove a task from the graph if it has already been

executed

4211 August 2022Sam Eriksen 4212 November 2024Sam Eriksen & Timothy Noble

Where we left things last time

• Began looking at intermediate result caching using scheduler plugins
• Allows for tasks to be run when a worker connects/disconnects or

transitions (e.g. from running to memory) a job
• Idea: perform check (ideally via RUCIO) if result exists before a task starts

Caching at analysis step level

