Elic University of
BRISTOL

Science and
Technology
Facilities Council

SWIFT
HEP

SoftWare InFrastructure and Technology for High Energy Physics

SWIFT-HEP
WP5 Analysis Systems
WP1 Data Management

Sam Eriksen & Timothy Noble

12th November 2024

« WP5 (Analysis Systems)

* overview + roadmap
e Current progress in WP5
* Future for WP5

« WP1 (Data + workflow management)

Ove rVieW * overview

* Current progress in WP1
* Future for WP1

Previous updates

https://indico.cern.ch/event/1366954/contributions/5871404/attachments/2828000/4940987/2024_04_SWIFT-HEP_Meeting.pdf
https://indico.cern.ch/event/1324606/contributions/5639228/attachments/2757250/4800888/2023_11_22_SWIFT-HEP_Meeting.pdf
https://indico.cern.ch/event/1325046/contributions/5575746/attachments/2724511/4734462/2023_09_29_SWIFT-HEP_monthly_update.pdf
https://indico.cern.ch/event/1290054/contributions/5420864/attachments/2654888/4597700/SE_SWIFT-HEP_monthly_update_May2023.pdf
https://indico.cern.ch/event/1215829/contributions/5306513/attachments/2620665/4530829/SWIFT-HEP_March2023.pdf
https://indico.cern.ch/event/1249939/contributions/5281648/attachments/2599865/4488840/SE_25Feb2023_2.pdf

WPs5: Analysis Systems

WPs5: Analysis Systems

Run analysis workloads optimally on
distributed resources

Analysis Anatomy

[New idea/extension of }

existing Work One cycle as

short as a day

[create/modlfy }
oraslongasa
‘ code '
month
New ideas for

improvement, [Run analysis on }
mistakes identified, or laptop/cluster/grid

updates
' ’ Understand H
results

[Publication }

See talk by Luke Kreczko for some BIG Picture

Sam Eriksen & Timothy Noble 12 November 2024

https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

Analysis Anatomy

Analysis step
output

caching DIRAC

Data lake

WP5 in a nutshell:
Run analysis workloads optimally** on distributed (GridPP) resources

** hbalanced between user-experience and computing efficiency

Sam Eriksen & Timothy Noble 12 November 2024 6

WP5: Roadmap

WP1

Data lake to
DIRAC (via
Rucio)

Virtual analysis
facility

DIRAC Via tags
workflow QW Specify resource requirements
REST manager per analysis component

API FileCatalog? (portability)

Dask to DIRAC
interface

() ©

Connect to data

Caching at WP5

analysis step
level

lake (caching)e

More detailed slides

Sam Eriksen & Timothy Noble 12 November 2024

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://docs.google.com/presentation/d/1hIwuAaIavxmtL0ckPLyLLw3b4Csuya2lUtUKhK82JQw/edit#slide=id.g12a7c0b9631_0_7

WP5: Roadmap

Dask to DIRAC « Add extension to dask

interface Dask is able to parallelize any python code

()

Connect to data
lake (caching)

Caching at

analysis step « Avoid having to re-run analysis steps

« Add the ability to save output after dask instance has closed

level » Persistent caching

Specify resource requirements

per ana'ysis Component ° Eg Let some StageS run on GPUs

(portability)

See talk by Luke Kreczko for some future planning

Sam Eriksen & Timothy Noble

12 November 2024

https://github.com/SWIFT-HEP/dask-dirac
https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

Where did we leave things
at the last workshop

Where we left things last time

WP1

Data lake to N Virtual analysis

DIRAC (via
Rucio)

facility

DIRAC Via tags

workflow (EWI Specify resource requirements
manager; per analysis component

FileCatalog? (portability) 9

Dask to DIRAC Connect to data Caching at
interface lake (caching)e e WP5
((1)

analysis step
level

Dask to DIRAC interface ()

* Reliable dask-DIRAC interface
* Multi-site submission / fine control

possible on distribution of workers
* Integrated with CMS AGC

I Bristol

Users

Local workers

cluster = LocalCluster()
PBS

cluster = PBSCluster()

Dirac workers

cluster = DiracCluster()

Sam Eriksen & Timothy Noble 12 November 2024

https://github.com/SWIFT-HEP/dask-dirac

Where we left things last time

WP1

Data lake to N Virtual analysis

facility

DIRAC (via
Rucio)

DIRAC Via tags

workflow (EWI Specify resource requirements
manager; per analysis component

(portability) (4)

FileCatalog?

Dask to DIRAC
interface

Connect to data

lake (caching) e Caching at WP5

analysis step
level

((1)

Connect to data lake

* Interact with diracdev StorageElement via
HTTP + x509

« gfal underneath

« Painful and wanted to move away from

 RUCIO via tokens was ideal

Caching at analysis step level

Began looking at intermediate
result caching using scheduler
plugins

Allows for tasks to be run
when a worker
connects/disconnects or
transitions (e.g. from running
to memory) a job

Idea: perform check (ideally via
RUCIO) if result exists before a
task starts

12 November 2024

Sam Eriksen & Timothy Noble

What's happened since the
last workshop

What have we been focusing on

Connect to data lake

« Wanted to communicate with RUCIO via REST-API with tokens

O Able to interact with RUCIO, but only with x509

o Tokens generated from the OIDC-Agent and Rucio at least with the IRIS-IAM varied, to the
point where Rucio would not accept the OIDC-Agent tokens. Investigation underway in
association with James Walder from SKAO (Full token stack Rucio instance)

o Token Authentication in Rucio is being redesigned by a token auth SIG

« We've parked progress on this until Tim has investigated further

Sam Eriksen & Timothy Noble 12 November 2024

What have we been focusing on

Caching at analysis step level

Initial idea; dask plugins

Scheduler Plugins
- Allows you to run custom Python code on scheduler when certain I Bristol

things happen
- Example;

Scheduler checks if output exists; if exists, load and don't run job, else, run job as normal
Workers send all data back to Scheduler which then perform ‘saves’
Essentially intercepts result before it's passed to the user

Worker Plugin
- Allows you to run custom Python code on all workers at certain
event in the worker’s lifecycle (such as when a process finishes) rSit:A_ - _I

- Example; ————— 1

Workers check if output exists; if exists, load and don’t run job, else run job as normal
In this case, workers interact with storage

Bristol ™~ ! 7 7 e e e e e e e -

NOte USErS e e s i J
- Dask already does caching which does similar to the above, but L I
we want persistency between dask sessions
= There's also the option for scheduler and worker plugins together
Sam Eriksen & Timothy Noble 12 November 2024 14

https://distributed.dask.org/en/stable/plugins.html

What have we been focusing on

Caching at analysis step level

Initial idea; dask plugins

Worker Plugin - where did we get to
= Created examples to explore what information we can get from
the worker at each stage

Created worker plugin to show what in the worker directory : L formet > o Histdin(os.etad0)))

Problem

= This is only done when the worker is killed (or the plugin
removed)

Limited by access to analysis step information / would require
interrupting the processes

- Very difficult to alter task graph on the fly

egister_plugin(plugin, name=

C_mMYV6bpilot/1300:

Sam Eriksen & Timothy Noble 12 November 2024

https://distributed.dask.org/en/stable/plugins.html

What have we been focusing on

Caching at analysis step level

Initial idea; dask plugins

Scheduler Plugin - where did we get to

- Created examples to explore what information we can get from
the scheduler at each stage

= Created example to check if a task (via hash) had already been
run (in backup)

Workflow would be;

= Some kind of combination of scheduler and worker plugin

- Access task hash, check if it exists, and then replace with
loading or saving data

Sam Eriksen & Timothy Noble 12 November 2024 16

https://distributed.dask.org/en/stable/plugins.html

What have we been focusing on

Caching at analysis step level

Initial idea; dask plugins

Problems with this approach

= Very hard to manipulate task graphs in this approach; hashes
associated with tasks are only semi-deterministic -> change
between dask sessions for the same code

- Very difficult to access individual steps in a task graph. Very
coarse; approach was more limited to final task.

Solution
= Work on calculating hash that is independent of scheduler state
and without plugins

deterministic hash test
outputs = client.map(neg, [1,2,3])
0.0s
Current time: 28:82:44
Tasks submitted: ['neg-cb23b95d4do96dbbf89cd1d672843469a"

outputs = client.map(neg,

Current time: 28:84:58
Tasks submitted: [neg-3c484328af689f5d903f5ddad7c47bd2’

Sam Eriksen & Timothy Noble 12 November 2024

https://distributed.dask.org/en/stable/plugins.html

What have we been focusing on

Caching at analysis step level

Ways to interact with dask submission

- client.get

- client.map (this is what CMS AGC uses)

- client.submit

- client.compute
- Find a common area where we can intercept the task graph and manipulate it
- Found _graph_to_futures* where we have access to the full graph

Taken from L.Gray PyHEP.dev 2023

*Actually, started with collections to dsk which only works with client.compute and developed a lot of this there before changing to graph to futures

Sam Eriksen & Timothy Noble 12 November 2024

https://distributed.dask.org/en/latest/_modules/distributed/client.html#Client.submit
https://distributed.dask.org/en/latest/api.html#distributed.Client.collections_to_dsk
https://indico.cern.ch/event/1234156/contributions/5510691/attachments/2688761/4668070/LindseyIntro_PyHEP_25072023.pdf

What have we been focusing on

Caching at analysis step |evel Scenarios to take into account for

a demonstrator

func A(str) func B(str)
1. Nothing changes -> read & return Cache(Y)
2. Achanges -> read Cache(D), calculate the rest
3. D changes -> read Cache(C, B), calculate the rest
4. Y changes -> read Cache(C, D), calculate Y
func C(A, Int) func D(b, int)
Requires
1. Probing task graph to work out output / input
2. Checking storage area for if it exists
. 3. Insert loading / saving stages into graph
func Y(C, D, int)
Sam Eriksen & Timothy Noble 12 November 2024 19

What have we been focusing on

Caching at analysis step level func A(str)

func A(str) func B(str) l

l l func C(A, int)

func C(A, int) func D(b, int)

func Y(C, D, int)

Case 2

func Y(C, D, int)

Scenarios to take into account for a
demonstrator

func D(b, int)

Nothing changes -> read & return Cache(Y)
A changes -> read Cache(D), calculate the rest

D changes -> read Cache(C, B), calculate the rest

>N

func Y(C, D, int)

Y changes -> read Cache(C, D), calculate Y

Sam Eriksen & Timothy Noble 12 November 2024

What have we been focusing on

Caching at analysis step level

Development State

- We've created a new dask client (DiracClient) which adds
persistent caching functionality

For task in Tasks:
hash = calculate_task_hash(task)
hash_found = check_storage(hash)
if hash_found:

task = load_from_storage(hash)
else:

task = task + write_to_storage(hash)

Additional functionality in the works/what needs more thought;

Changeable location of Persistent Cache; want RUCIO and local
options at the very least

More work is needed to be compatible with CMS ACG; should wait for
coffea-2024

Default is to cache everything, good option to have but likely no ideal

Sam Eriksen & Timothy Noble 12 November 2024

DiracClient(Client):

"""Client for caching dask computations"™"

_graph_to_futures(
self,
dsk: dict[str, Any] | HighlLevelGraph,
*args: dict[str, Any],
**kwargs: dict[str, Any],
-> Any:
not isinstance(dsk, HighlevelGraph):

dsk = HighlLevelGraph.from_collections(id(dsk), dsk, dependencies={})

info = dsk.to_dict()
logging.debug(
"Input dask graph:\n%s\n

info,

21

https://github.com/SWIFT-HEP/dask-dirac/blob/main/src/dask_dirac/_dask.py#L116

What have we been focusing on

Caching at analysis step level Path 2

, Path 1
func_a(x
x func e ! v
func_b(x . B ;
x / \ Case if no cache entries Case if cache b and cache ¢
e have been found are found
= func b | |func_d
A T T func_save e
: func_save e
et) func_a| |func c \
func_e
/' \ func_e
Example of what the output is from func save b [func save d /' ‘\
simple 5-function graph o S —5
func load b | |func_save d
Path 1 fun‘(L:_b fun‘c_d A
first time running func d
func_save a| [func_save ¢ -
Path 2 ' T
second run, but function d has been P P func load ¢
edited — —
Sam Eriksen & Timothy Noble 12 November 2024 22

Summary and

- We have a dask-dirac interface

= - Workers are split across sites
p '-a n g OI n g - Effectively splits up work across
forward

these sites

- We have been looking at task
graph manipulation

DRAC (12 sl anaysi - Found entry point giving fine-grain
access to a graph
DIRAC. Vistage _ : - Implemented caching that persists
e — (ﬁi’f th'.yt component between dask sessions
FileCatalog? e () - Avoid rerunning tasks where result
exists

Dask to DIRAC Connect to
interface data nge Caching at
(caching) analysis step
level

- Where are we going

- Awaiting tokens
- Awaiting ACG update -> coffea.2024

23

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf

WP1: Data Management

WP1: Data Management

Optimise the heterogeneous storage
infrastructure across the UK

WP1: Data Management Overview

* Deploy a UK based prototype data lake Q

O Core sites Rl_JCK?
O S3sites Monitoring

O State-less storage

* Generate metrics for comparison of current to Q
improvements made

#RUCIO

* |mplement Quality of Service behaviour and information QoS Behavior

in Rucio

O Develop Rucio to expand the levels of service it provides
O Create new behaviours in Rucio to enable improved data access

®* Produce site recommendations on how to optimise data

access and stateless storage

* Setup and test SSD storage endpoints to test and
develop fast storage endpoints

Sam Eriksen & Timothy Noble 12 November 2024

Data Management developments o

* Tim has redesigned and expanded upon previously shown
monitoring solution to be production-ready (Deployed for
astronomy experiment LSST), deployed with OpenSearch.

e made these tools available to other communities by contributing deployment back

to Rucio repositories (Rucio workshop talk)

* Takes 3 different data streams
from Rucio, to be visualised
in Grafana.

®* Minimal design to ensure
easy to maintain and deploy

* Allows for quantification of
future developments

-

Elastic/OpenSearch

Logstash

Prometheus

o 3om -

~Core Ruclo

-3

°
sonessoionsmsssose (NRRINRRRDINNNNNNE 2789

m 141333 18791?,, e In— 275

o

Py

t
u

I

I

UHWHHHHIH

(Gore] Requests to Server over 30m O

[Dsemans] Daemon actions per second over 30m O

o e o s

LU
.’ﬂf’.] 'J'm.ﬁt o

= Sl ™

Egﬂh?’u'ln N 'IW‘ h%ﬂm

oar0000 oaEe 0000 m.m. ®000000 wwmcocs e

Ouick Summary - Account Usage O

Sam Eriksen & Timothy Noble

12 November 2024

https://indico.cern.ch/event/1366954/contributions/5749554/attachments/2779191/4939525/TNoble%20Swift-HEP%20update.pdf
https://indico.cern.ch/event/1343110/contributions/6096503/

Data Management development plans o

Investigation of ServiceX (or other tools to
optimise data access for analysis)

#RUCIO

ServiceX

O Developed by IRIS-HEP REST

O Software that sits between the Storage and
Analysis Facility (close to storage), and extracts a

subset of data columns from whole files - rather
than moving the whole file @
Kubernetes
O Reduces the networking needs from storage to
analysis

B Userrequests a subset of data from file(s)

B ServiceX queries Rucio for files

B Job started in Kubernetes cluster to extract needed files
and create a new one

Sam Eriksen & Timothy Noble 12 November 2024

https://iris-hep.org/projects/servicex.html

Data Management development plans

» Fast Storage
#'RUCIO

O Sites provision Storage by Capacity, but not
throughput or access rates

B |ssues will arise with larger data files and increased
required data rates where storage endpoints
provision more storage, but throughput does not
scale at the same rate

O Further coordination with Core Rucio team to
develop Quality of Service to better serve Fast
storage

O Using file popularity to move data between Fast
and Disk storage endpoints to ensure read/write

needed for analysis Site A
Analysis

Sam Eriksen & Timothy Noble 12 November 2024

Data management
summary and
future plan

Robust
Monitoring

Sites with
5!
#RUCIO FAST QoS

ServiceX

WP5
Analysis
facility

Deployed Robust monitoring at RAL for
SWIFT-HEP and at Stanford for LSST
(improvements to one feed into the other)

Approaching data management from
Software and Hardware utilisation

Further integrations with the Analysis
facility to enable better data access

Will develop Rucio to investigate the
prioritization of fast storage as more fast
storage pools are available in the UK now

Will work with CERN liaisons to test
deployment ServiceX at RAL to test data
access improvements

30

University of

BRISTOL

Science and
Technology
Facilities Council

Questions?

SWIFT
HEP

SoftWare InFrastructure and Technology for High Energy Physics

BACKUP

What have we been focusing on

Caching at analysis step level

What do we want to demonstrate

Imagine a complex task that you want to run.

Task Task Task

If you know you are going to have to run this multiple times, but are

Analysis step

ﬂ only modifying one of the functions, you can think of a few ways to
reduce the reprocessing;

= Most obvious would be to break up the graph and submit each task

Task Task

separately and save the outputs, and if you are rerunning, load the bits

you haven't changed.

= We want that to automatically happen when you submit something.

Sam Eriksen & Timothy Noble 12 November 2024 33

Modifying a task graph: Practical example

Caching at analysis step level

This is what we have to play with;

Task is;

- Calculate hash

- Check if hash exists somewhere hash(‘func_b’, hash(func_a’, 2))
- If exists; replace with load
- If doesn'’t; add save

1{ "func_a-func b", 8): (<function func b at 8x7f5d5a957768>,

{<function func a at 8x7+5d5af9576dé>, 2)),
Same as above ("func_b*, @): ('func a-func b', @),
¢) ¢) ("func c-func d°, 8): (<function func d at ex7f5d5a957
hash(‘func_d’, hash(‘func_c’, 2)) | ("func_c-func_d’, 8): (..*runr 1l||| ‘|'L'I_I|I.._d a L_ +,d 5
— — (<function func_c at 8x7f5d5a95

Same as above (‘func d°, @): (func c—ftunc d°, 8),
("func e, B8): (<function tunc e at Bx/+5d5a957918>,
{("func_d*, 8),

(“func_ b, @))}

o

hash(‘func_e’, hash(‘func_d’, hash(‘hash_c’, 2)), hash(‘func_b’, hash(‘func_a’, 2)))

Sam Eriksen & Timothy Noble 12 November 2024

Modifying a task graph: Practical Example

func_a

func b

func _c

func_d

func e

Sam Eriksen & Timothy Noble

param_a = pd.DataFrame(np.array

layers

param_b = pd.DataFrame(np.array fu n.G e

func_a, param_a
func_b func_a”

func_c, param_b

s o func b

func_d

"func_e’ func_e func_d” “func_b
dependencies
"func_a": set

T

set

“func_e": {"func b", "func d funC_a

hlg = HighLevelGraph(layers, dependencies

func_c

12 November 2024

Practical Example

Caching at analysis step level

<function func b at

<function func_a at
3 @ ¥

<function func_d at

11 August 2022

<function fi

<«functic

Practical Example

Caching at analysis step level

» dtype=list, chunks=

{({"func_a-func_b-func c', 8):
(<function func_
("func_a-func_b-func_c', 1): (<function func_c
(<function func_b at ¢
(<function func_a at
("func_a-func_b-func_c’, 2): (<function func_c at 8
|\+un-t1un func_b at @x7e
<function func_a at 8x7
("func_c", 8): (c_a-func_b- Funr ",

‘ 0 | ‘ ! ‘ | 2 | (“func_c", c a-func_b-func c’,
(“func_c", 2): (c_a-func_b-func_c’,

Sam Eriksen 11 August 2022

Practical Example

{("func_a-func_b-func_c', 8): (<function func_c at 8x7efdccb7fede>,
(<function func_b at @x7efdccb7fe48>,
(¢<function func_a at @x7efdccb7fsbe:>, 2))),
("func_a-func_b-func_c', 1): (<function func_c at 8x7efdccb7tede>,
(<function func b at ex7efdcch7f646>,
(<function func_a at @x7efdccb7fsbe>, 3))).
("func_a-func_b-func _c', 2): (<function func_c at @x7efdccb7fede:,
(<function func_b at 6x7efdccb7fe48>,
(<function func_a at @x7efdccb7fsbe>, 4))).
("func_ c', 8): ("func_a-func_b-func c', 8),
("func_c', 1): ("func_a-func_b-func_c, 1),
("func_c', 2): ("func_a-func_b-func_c', 2)}

{("func_a-func_b-func c', 8): (<function func c at Bx7fd85844cdcé>,
(<function func b at 8x7fd85844cd38>,
(<function func_a at @x7fd2858875878>, 2))),
("func_a-func_b-func_c’, 1): (<function func_c at 8x7fd85844cdc@>,
{<function func b at ex7fd85844cd38>,
(<function func_ a2 at @x7+d85844c0dé>,))),
("func_a-func_b-func_c’, 2): (<function func_c at 8x7fd85844cdc@>,
(<function func b at @x7fd85844cd38>,
(<function func_a at @x7fdB58875878>, 4))),
("func c', @8): ("func a-func_b-func c*, 8),
("func_ c', 1): ('func_a-func_b-func c*, 1),
{("func c', 2): ("func_a-func b-func c", 2)}

Sam Eriksen 11 August 2022 38

Worker Plugin example

Caching at analysis step level

Description
- When worker is shutdown/killed or the plugin is disconnected,
the directory path and contents are displayed

.listdir

O

Sam Eriksen & Timothy Noble

Worker Plugin example

Caching at analysis step level

Description
- When worker is transitioning between states, the state is
printed and the number of transitions are counted

Sam Eriksen & Timothy Noble 12 November 2024

Scheduler Plugin example

Description
- Remove a task from the graph if it has already been
executed

Sam Eriksen & Timothy Noble

previous_executed_tasks

update_graph(self, scheduler, keys= , tasks=
current_time = datetime.now().strftime("%H:%M:%5")
print(
print(
print(
print(
print(
print(

current_time
tasks}")
d Tasks previous_executed_tasks}")

scheduler.tasks}")

1 scheduler.unrunnable}”)

tasks_to_execute = []
for task in tasks:
if task previous_executed_ tasks:
print(f"Task {task} has alre

tasks_to_execute.append(task)

previous executed tasks.append(task)

tasks = tasks_to_execute
keys

print(tasks_to_execute}")
print(f keys

scheduler.tasks = {key: scheduler.tasks[key] for key in keys}
scheduler.unrunnable = {key: scheduler.unrunnable[key
print(le scheduler.tasks}")

print(scheduler.unrunnable}")

print(

12 November 2024

for key in

keys if key scheduler.unrunnable}

41

Where we left things last time

[
[
WP1 I g—
Data lake to Virtual - o |
DIRAC (via > fI _:!fyana sis - | Wa‘l:_’:__ﬂm |
Rucio) acilr L - |
I — — — -—)

I Data |
|
[

Storage Element

Dask to DIRAC
interface

((1)

DIRAC
workflow
manager

FileCatalog?

Connect to data

lake (caching) e

Via tags
E PN Specify resource requirements
per analysis component

(portability) (4)

Caching at
analysis step WP5

level

| Bristoll

Caching at analysis step level

* Began looking at intermediate result caching using scheduler plugins

« Allows for tasks to be run when a worker connects/disconnects or
transitions (e.g. from running to memory) a job

« Idea: perform check (ideally via RUCIO) if result exists before a task starts

12 November 2024 42

Sam Eriksen & Timothy Noble

