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e Avery quick introduction to the Lattice
o« Numerical strategies for the Lattice

e Current physics calculations using the Lattice



The science programme



The Standard Model of Particle Physics

Standard Model of Elementary Particles
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* The SM describes the strong and

electroweak interactions

(including the Higgs sector) very

successfully

* The electroweak interactions are

amenable to analytical
predictions

* The strong interactions require
non-perturbative ab initio
methods
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* The theory givesrise to a
spectrum of hadrons
(baryons, mesons,
glueballs and exotica) at
zero temperature

* Deconfinement happens

L e & Sl = at a critical/crossover
Universitat Bielefeld 3 1 = Strong Coupling
temperature
* Exotic phases at non-zero
Protons R denSIt
Neu:rons i - ::».;' “.' . y

H S * All these are non-
@®®@ | ) perturbative phenomena

Image credits: Wolfgang Unger Enters the Lattice...
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e Gravity is not accounted for

e Asymmetry matter-antimatter

o Absence of CP violation in QCD

o Dark matter/dark energy

e Fundamental mechanism for electroweak symmetry breaking
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1. Precision frontier
Observables are computed theoretically and determined experimentally to very
high accuracy, with deviations providing evidence for new physics and agreement
setting stringent bounds for the latter

The Lattice provides a robust calculation tool for precision physics

2. Energy frontier

Theoretically motivated interactions beyond the standard model are studied, with
their observables providing input to phenomenology

Non-perturbative calculation on a lattice often crucial



From the continuum to the lattice IR fheriawe
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1. Start from the Euclidean Path Integral formulation of the theory

| (D) Olgle>
J (Dg)e=>

2. Approximate the integral on a grid of spacing a and of size V=N, x N3

0) =

3. Compute the integral with Monte Carlo methods

4. Extrapolateto V—-> ¢° anda > 0
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Fields on the lattice
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Figure from Particle Data Group
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Example: mass determination
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Figure from E. Bennett et al., Phys. Rev. D 110 (2024) 7, 074504 (arXiv:2405.05765)
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Computational strategies for the Lattice
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e Goal: sample the Euclidean path integral on a grid and reconstruct continuum
physics from it

o« Work flow can be broken in two main (distinct) components: generation of
gauge configurations via MCMC and measurements of observables

e Generally the computational cost generation:measurements is between 80:20
and 90:10

o For the generation, the bulk of the time is spent on the inversion of a large
sparse matrix

o Details are different, as there are a few community codes taking a different
angle in order to optimally target different Physics applications

e Broadly speaking, the main algorithm is conjugated gradient (and
improvements), which is accelerated with preconditioners




Computational challenges

o 0(10°) SU(3)/SU(N)/Sp(2N) matrices at
each step

o Need to invert sparse matrix of ~ this
linear size

e Hierarchic programming: low-level vs

accelerator vs shmem vs distmem

e Need to interlace communication and

computation

o Equivalent different formulations of the
physical problem implemented in
community codes

Image credits: A. Portelli
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* Taking the infinite volume limit at constant lattice spacing generates a

polynomial growth of the computational time

* Taking the chiral limit results in (nearly) ill-conditioned inversions of
large sparse matrices

* Taking the continuum limit at fixed physical size causes an exponential
growth of the required operations

* At high temperatures large lattice artefacts need to be tamed
 Large cancellations happen in the Monte Carlo at finite density

e Additional cost for varying gauge content and fermion
representations
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* Design, implementation and development of highly specialized
algorithms

* Parallelism exploited at all possible levels
* Intense use of cutting/bleeding edge computational resources

* Development of suites of open-source community codes (Grid, HiRep,
MILC, OpenQCD, QUDA...)

e Continuous dialogue with hardware and technology providers
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Grid
https://github.com/paboyle/Grid
e Purpose: Lattice QFT (QCD, QCD+QED, BSM, ...)

o Parallelism:
o CPU:SIMD, Multi-thread, Multi-processing (MPI).
o GPU: SIMT (Cuda, HIP, Sycl), Multi-processing (MPI).
o Expression template engine abstracts site wise operations (automatically parallel).
o High level cshift and stencil interfaces.

o Multiplatform: vectorisation for many instruction sets (SSE,AVX,AVX2,...)

e Implements popular lattice QCD fermion actions (Wilson, DWF, Staggered,...)
e \Variety of solver algorithms already implemented (CG, Multi-grid, Lanczos,...)
e Full HMC/RHMC interface included.

o Workflow management: _| a d FONS [https://github.com/aportelli/Hadrons]




HIRep

https://github.com/claudiopica/HiRep

Purpose of the code: explore novel strong interactions

Main physics motivations: fundamental mechanism of electroweak
symmetry breaking in the standard model and dark matter

Lack of clear experimental guidance suggests to use safe methods
Different theories are implemented at compilation time, through a PERL
preprocessor

Uses arrays of structures, enrolling and inlining of mathematical
operations

The original code is high-level, developed in C, and uses MPI with
latence masking

More recent implementations using OpenMP and CUDA available



A (biased!) selection of current calculations
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The muon g-2 (in 2021)

Experiment vs Standard Model prediction
Muon g—2 Coll., Phys. Rev. Lett. 126, 141801

Exp:  a, = 0.00116592061(41) . R
{ 4% )
SM:  a, = 0.00116591810(43) e .
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Credits: V. Guelpers



The muon g-2
2024 update

BMW/DMZ 24,
2407.10913

adds 0.048fm
ensemble,
reduces finite
L/T error. Uses
data-driven for
large-t tail.
Blinded
analysis.
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693.1(4.0)

g BMW20: 1

<
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= 707.5(5.5)

BMW/DMZ24: 10"%a;°"VF = 714.1(3.3)

Credits: C. Davies
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Y. Aoki et al., arXiv:2411.04268
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Gauss law: only zero net charge is alowed in a finite volume with periodic boundary conditions

Q= djo(t,x)= ¥ r -E(t,x)= 0
Rossible solutions:
e0oe00e0 R
o000 oo 000 0000
oo <00 - 0000 A Ah A0 dh e
o000 o000 00 A A0 A0 A0 4
o000 eeeee il dihd
| &=2?{%3/L,Z/T} =)= (2Z%+ n)7/L
remove spatial zero-mode use massive photon 1, employ C* boundary conditions
of the photon field
M.Hayakawa & SUno, PTP 20 (2008) M.GEndres e al., [B07.0898] ASKronfeld & U-JWese, NFB 357 (199)

B.Ludini et al., JHEP BO2 (20B)

Large power-law finite size effects arise Credits: M. Di Carlo



Strongly interacting theories beyond IR Rrifyegol
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the Standard Model — Example Spectrum & Sness
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Integration of machine learning methods

I

o« ML for acceleration of algorithms

o ML for generation of configurations

o ML for improvement of noise/signal ratio

e ML for discovery of improved/novel observables

Transposed convolutions

£ Input

Transformations

Output >

Lo

Compare

L1 =bLyg

L =bY9Y[,
[D. Bachtis, G. Aarts, F. Di Renzo, and B. Lucini, Phys. Rev. Lett.,
128:081603 (2022)]
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o Lattice QCD (or better, Lattice Gauge Theory) is a mature computational
branch of theoretical particle physics
o« Computational demands of the science questions keep being a challenge
also at the exascale
e On the bright side, LGT can drive exascale development, both in
hardware and software, that are transferable across disciplines
o A set of community codes are being ported to future architectures
o« Benchmarks that are derived from those codes can provide measures of
performance that usefully inform other applications (and the vendors!)

e Integration of machine learning methods offer new opportunities
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