
HEP Packaging Coordination: 
Reproducible reuse by default

Matthew Feickert
University of Wisconsin-Madison

Reinterpretation Forum Workshop
February 27th, 2025

1
FAIROS-HEP

https://indico.cern.ch/event/1466101/contributions/6287842/


Goals for computational environment preservation

● For analysis preservation and reinterpretation we care not only about 
preserving the data and the source code, but also the full computational 
environment.

● Ideal way to achieve this is by having an environment manifest
○ 💡File that specifies the known software requirements of your analysis

● …and an environment lock file
○ 💡Hash level list of the exact environment actually “solved”

● Software products should be publicly accessible, long term archivable, and 
hash-level verifiable

○ You shouldn’t have to guess or ask if you have things right. This should be programmatic and 
automatic.

○ Requires long term public infrastructure

2



Quick setup for demo later
There’s going to be a demo later on in this talk! :D

To follow along all you need to do is install pixi and then restart your shell.

● Linux/macOS

curl -fsSL https://pixi.sh/install.sh | bash

● Windows

powershell -ExecutionPolicy ByPass -c "irm -useb https://pixi.sh/install.ps1 | iex"

pixi is a single securely signed Rust binary, it won’t hurt you, and you can trivially remove it from your computer later if you want.

If you don’t believe me you can also use a Linux container:

docker run --rm -ti ghcr.io/prefix-dev/pixi:latest

3

https://pixi.sh/


What is conda-forge?
● Open source global community software build 

infrastructure and package registry system
● Support building arbitrary software for Linux (x86_64, 

aarch64, ppc64le), macOS (x86_64, arm64), Windows 
(x86_64, arm64) as “conda” package

○ Conda packages are zipfiles of tar.zst directory trees to be 
unpacked with additional environment magic.

● Built distributions are publicly and permanently hosted on 
Anaconda.org on the conda-forge channel

○ Conda-forge is immutable after upload. Can be marked as “broken” 
but not removed (unless legally required)

● Software artifacts on conda-forge are installable by 
anything that knows how to interact with a conda 
package: conda/mamba/pixi

● Co-founded by (now) CERN’s Philip Elson!
○ c.f. Phil’s SciPy 2016 talk Community-Powered Packaging with 

conda-forge 4

https://pelson.github.io/
https://youtu.be/Hacl_YFzZOw?si=G_326EEBb3UhL9Is
https://youtu.be/Hacl_YFzZOw?si=G_326EEBb3UhL9Is
https://conda-forge.org/


HEP Packaging Coordination
● Community project on GitHub to 

get as much HEP software as 
possible on conda-forge

○ High quality research software should 
be trivial to install and provide platform 
specific optimized binary builds by 
default

○ Building from source should be an 
option for development and debugging, 
not the default

● In the context of reinterpretation, 
if you want to preserve your 
analysis environment, you preserve 
the whole thing, not just the source 
code.

5https://github.com/hep-packaging-coordination

https://github.com/hep-packaging-coordination
https://github.com/hep-packaging-coordination


HEP Packaging Coordination

6

Matthew Feickert
(ATLAS, IRIS-HEP)

Chris Burr
(LHCb, conda-forge core)

Giordon Stark
(ATLAS)

Henry Schreiner
(IRIS-HEP, PyPA)

…and anyone else! Open community project, looking for volunteers.

https://www.matthewfeickert.com/
https://giordonstark.com/
https://github.com/henryiii
https://github.com/chrisburr
https://www.matthewfeickert.com/
https://github.com/chrisburr
https://giordonstark.com/
https://github.com/henryiii


Other existing packaging projects (why another?)

There have been ~similar efforts in
the past

An incomplete list:

● Gentoo sci-physics
● HEPrpms
● Homebrew-hep
● Build system managers

(HPCs, builds from source)
○ Spack
○ EasyBuild

7Thanks to Alexander Puck Neuwirth for making me aware of most of these 

Critical difference (why you should care)

Conda-forge is:
● Multi-platform

○ Linux (x86_64, aarch64, ppc64le)
macOS (x86_64, arm64)
Windows (x86_64, arm64)

● Global scale community software
○ Contribute to maintenance/effort, not our 

sole responsibility
● Fully automated

○ Automatic ABI migrations and rebuilds 
without losing past distributions

https://github.com/gentoo/gentoo/tree/master/sci-physics
https://github.com/andriish/HEPrpms
https://davidchall.github.io/homebrew-hep/
https://packages.spack.io/package.html?name=pythia8
https://docs.easybuild.io/version-specific/supported-software/p/PYTHIA/
https://github.com/conda-forge/looptools-feedstock/issues/1#issuecomment-2497280299


The role of Linux containers

8

Different solutions for different problems:
Linux containers are distribution methods, not packaging technologies.

Linux containers for when you want to

● Deploy an instantiated, bespoke 
environment as a single executable 
on a known platform

● Sandbox an environment from the 
rest of the operating system

Powerful and necessary: Note that 
conda-forge itself heavily uses Linux 
containers!

For ATLAS RECAST, Linux containers are 
critical and have enabled large successes
(I think they’re great!)
● c.f. ATLAS Run 2 pMSSM analysis

However,
● Most users find them confusing 
● Composing environments is 

cumbersome
● Sometime you get “the kitchen sink”, 

not something well scoped/designed

https://inspirehep.net/literature/2755168


The role of Linux containers

9

Realistically, different amounts of work between different solutions.

conda-forge

● First build effort:
○ PyPI (trivial)
○ Bespoke C++/Fortran (some)
○ Heavily patched and vendored 

custom software (large)
● Next build and rebuilds

○ “Easy” to “push button”
● Multi-platform: support is easy
● Composition: Trivial

○ We’ll see this in a moment with 
pixi

Linux containers

● First build effort:
○ Same as every other build 

(depends)
● Next build and rebuilds

○ Same as every other build 
(depends)

● Multi-platform: Complex
○ requires doing cross-builds to other 

platforms with emulation or doing separate 
builds and then joining manifests. All “by 
hand”.

● Composition: Complex

https://github.com/conda-forge/
https://pixi.sh/


What do I (someone who develops tools) need to do?

● This is all opt in
○ Advantages are worth it in my experience

● Can you write a build script?
○ If so, you are ~90% of the the way to having your software be packaged on conda-forge.

● Have all your dependencies on conda-forge already (bootstrap system)
○ Might have to talk to some people (or package them yourself)

● Have your source code come from a stable and static official source
○ No go: Distributions on website that may disappear without warning with no long term 

archive. Don’t do this!
○ Not great: Tarballs on a distribution website with no long term preservation
○ Better: Public version controlled system with 1-to-1 release tags
○ Best: “Better” solution with Zenodo archive for “permanent” archive access

● Ask for help from people in HEP Packaging Coordination.
○ Some things will not be inherently obvious, but those things are also usually quality of life 

things that you didn’t think to expect (e.g. selectors, multi-platform environment variables, 
recipe linting, validation checks)

10

https://www.softwareheritage.org/
https://docs.conda.io/projects/conda-build/en/stable/resources/define-metadata.html#preprocess-selectors
https://docs.conda.io/projects/conda-build/en/stable/user-guide/environment-variables.html#environment-variables-set-during-the-build-process
https://github.com/conda-forge-linter


What do I (a user of tools) need to do?

● Very little
○ Know what your software requirements are
○ Know what platforms you want your analysis to run on
○ Have pixi installed (lives in user space so you can do this yourself anywhere)

■ Though talk to your cluster admins for more efficient caching use
● This brings us to the demo!

11



Live Demo

On any Linux or macOS machine:

$ mkdir rif-workshop-example

$ cd rif-workshop-example

$ pixi init

$ time pixi add cxx-compiler fortran-compiler lhapdf pythia8 
smodels

$ pixi shell

12

Alternatively go to:

https://github.com/matthewfeickert-talks/talk-reinterpretation-forum-workshop-2025 

https://github.com/matthewfeickert-talks/talk-reinterpretation-forum-workshop-2025
https://pixi.sh/


What just happened? (What is pixi?)

● Pixi is what I call an “environment manager” rather than a “package 
manager”

○ Different philosophy of managing your project environment rather than a globally active 
environment of tools

○ Written in Rust (very fast)
○ Intelligent caching
○ Can talk to/install from any conda package index (e.g. conda-forge) and any Python 

package index (e.g. PyPI)
● Has high level semantics ✅ intended for scientists
● High level manifest ✅ that supports multiple environments, task runner
● Automatically and non-optionally generates a hash level lock file✅

13

https://pixi.sh/


(Known) Limitations

● Entire environment needs to be provided so far
○ Normally a feature, but you can imagine situations in which you want to extend an existing 

experiment specific environment (e.g. LCG view or ATLAS Analysis Release) that is 
hardcoded to certain binaries (e.g. Python).

○ Chris Burr + others have done a lot of work in LHCb to make this a better experience. Can 
learn from them.

● Builds are official versions, but LHC experiments realistically use heavily 
patched releases.

○ Normally a feature, but this means you aren’t getting official production versions of tools used 
by e.g. ATLAS/CMS. That’s probably fine for most use cases, and also what rest of the 
community expects from tools as well.

● Lots of small files in user space on distributed systems / HPCs can be 
problematic

○ These systems optimized for reading large input files.
○ Workaround: Distribute environment in Linux container image to system (e.g. execute with 

Apptainer)
14



Where to go from here?

● FAIROS-HEP is sponsoring a HEP Packaging Hackathon in 2025
● Members of HEP Packaging Coordination and conda-forge core team will 

lead tutorials on packaging HEP software for conda-forge and use tutorials 
with pixi

● Upcoming and details TBD, so stay tuned, but you can get started now.

15

https://fairos-hep.org/


Summary

● For analysis reinterpretation and reuse, want full computational 
environment preservation, but also for it to be

○ easy to create
○ with good semantics
○ fully reproducible

● Packaging tools on conda-forge gets us the distribution, automation, and 
community support

○ For machine learning, also have the full CUDA stack on conda-forge thanks to the NVIDIA 
open source team

● Using pixi gets us the scientist level semantics, with cross-platform 
manifest and lock file

16

https://github.com/conda-forge/cuda-feedstock/
https://pixi.sh/
https://github.com/conda-forge/


Backup

17



New! conda-forge recipe spec v1 release announcement

18Same day as this talk, which feel fortuitous!

https://conda-forge.org/blog/2025/02/27/conda-forge-v1-recipe-support/

https://conda-forge.org/blog/2025/02/27/conda-forge-v1-recipe-support/
https://conda-forge.org/blog/2025/02/27/conda-forge-v1-recipe-support/


Example: Process of packaging on conda-forge

Adding a package to conda-forge

1. Fork https://github.com/conda-forge/staged-recipes on GitHub
2. Make a new branch from main for your package's recipe.
3. Make a new folder in recipes for your package.

a. Look at the example recipe, conda-forge documentation, and the FAQ for help, and ask HEP 
Packaging Coordination if you have any questions.

4. Add your package’s recipe, patching if necessary
a. If on PyPI can probably just do pixi run pypi <PyPI package name>

5. Lint the recipe with pixi run lint
6. Build the recipe locally to do a quick test for your OS with pixi run 

build-linux / pixi run build-osx
7. Push your changes to your fork and open a pull request to main, validate that the 

CI builds pass, follow checklist, request review.

19Example: SModelS

https://github.com/conda-forge/staged-recipes
https://github.com/conda-forge/staged-recipes/blob/main/recipes/example
http://conda-forge.org/docs/maintainer/adding_pkgs.html#
https://github.com/conda-forge/staged-recipes#faq
https://github.com/hep-packaging-coordination
https://github.com/hep-packaging-coordination
https://github.com/conda-forge/staged-recipes/pull/29257


Example: Process of packaging on conda-forge

Adding additional platform builds (read the docs!)

1. After feedstock creation and rerender, fork the feedstock repo
a. All development must be done on personal forks (not orgs and not on the original)

2. Open a PR to the conda-forge-pinning-feedstock repository that add your 
feedstock to arch_rebuild.txt (for linux-aarch64, linux-ppc64le) and to 
osx_arm64.txt (for osx-arm64).

3. Can manually add these as well, but then you have to manually maintain 
these files.

20

https://conda-forge.org/docs/maintainer/
https://conda-forge.org/docs/maintainer/knowledge_base/#using-arch_rebuildtxt
https://conda-forge.org/docs/maintainer/knowledge_base/#using-arch_rebuildtxt
https://conda-forge.org/docs/maintainer/knowledge_base/#apple-silicon-builds


Example: Process of packaging on conda-forge

Updating to new releases (read the docs!)

1. When a new release tag of your package’s “upstream” source code is 
released (e.g. new tag on GitHub, tarball on HEPForge (legacy)) 
regro-cf-autotick-bot will automatically discover and pick this change up within 
24 hours. 

2. regro-cf-autotick-bot will then open up a PR with the new version, 
rerender with conda-smithy, and tag you for review.

3. If the PR needs adjustments, you can push directly to regro-cf-autotick-bot’s 
fork’s branch or close the PR and manually migrate it yourself in a new PR.

21

https://conda-forge.org/docs/maintainer/
https://github.com/regro-cf-autotick-bot


CVMFS
CVMFS is an interesting and successful HEP specific solution but as is in the 
name it is a distributed file system. It is not a global package index.

When you select software from CVMFS you are selecting entire distributions 
of software that you may or may not actually want (e.g. LCG views). There’s 
no way reasonable and reproducible way to create long term bespoke 
distribution selections.

CVMFS works quite well for C++ libraries. It is a pretty miserable experience 
for Python, and there’s no support for Julia or other modern languages that 
we’re seeing in our ecosystem.

22


