Limits on an Exotic Higgs Decay From a Recast ATLAS Four-Lepton Analysis

Junyi Cheng (Harvard University)

[2412.14452 JC & Rabia Husain & Lingfeng Li & Matthew Strassler]

LHC Reinterpretation Forum February 25-28, 2025

- Introduction
- ATLAS $Z \rightarrow 6f$ analysis
- Our reproduction of ATLAS $Z \rightarrow 6f$
- Limits on $H \rightarrow 8f$

Introduction

Hidden Valley / Dark Sector (HV/DS) theory [Strassler & Zurek 2006]

- gauge group: $SU(3)_C \times SU(2)_L \times U(1)_Y \times dark$ sector
- simplest case: Hidden Abelian Higgs Model $U(1)_D$

[Schabinger & Wells 2005, Gopalakrishna & Jung & Wells 2008, Curtin & Essig & Gori & Shelton 2015]

3

- gauge boson (dark photon) X_{μ} and dark Higgs H_D
- possible gauge-invariant renormalizable couplings to SM:
 - O gauge sector kinetic mixing $\frac{\chi}{2} \hat{X}_{\mu\nu} Y^{\mu\nu}$,

 X_{μ} can decay to SM fermions,

lepton BR $\sim 15 \%$

• Higgs sector $\kappa |H|^2 |H_D|^2$

Introduction

choice of signal

- signal:
 - $\circ \geq 2 X_{\mu}$ leptonic decay
 - $\circ \geq 2$ lepton pairs
 - equal invariant mass $m_{ll} \sim 25 \text{ GeV}$
- other searches:
 - O lower m_{ll}
 - no symmetric m_{ll} requirement
 - put additional restrictions, e.g. MET & $m_{4l} = m_H$

- leptonic final states:
 - O small backgrounds
 - O easier to reconstruct
 - O sizeable BRs
- not very sensitive to model specific details, e.g. parity & fundamental or composite particle, good modelagnostic signature

- only require 4 leptons, the third A' can decay hadronically
- ATLAS paper includes both on-shell and off-shell, but we are only interested in on-shell case $m_{A'} < m_{h_D}/2$
- other papers with 4-lepton final states:
 - O lower m_{ll} [1106.2375 CMS, 1210.7619 CMS, 1506.00424 CMS, 1812.00380 CMS]
 - no symmetric m_{ll} requirement [1511.05542 ATLAS, 1701.01345 CMS]
 - put additional restrictions, e.g. MET [2103.11684 ATLAS] & $m_{4l} = m_H$ [1505.07645 ATLAS, 1802.03388 ATLAS, 2110.13673 ATLAS, 2111.01299 CMS]

 $Z \rightarrow 6f$

ATLAS analysis

- triggers: 1-lepton $p_T \sim 25$ GeV, 2-lepton $p_T \sim 15$ GeV, 3-lepton $p_T \sim 10$ GeV
- dominant physics background is $q\bar{q} \rightarrow 4l$, but fake lepton from detector is equally important

Figure from [2306.07413 ATLAS]

 $Z \rightarrow 6f$

ATLAS analysis

- event selection cuts:
 - \geq 4 loosely isolated leptons with $p_T^e >$ 4.5 GeV, $p_T^{\mu} >$ 3 GeV
 - $\circ \geq 2$ SFOC lepton pairs
 - $0.85 < m_{34}/m_{12} < 1$
 - $m_{4l} < m_Z 5 \text{ GeV}$
 - reject $m_{ll} \in [0,5] \cup [8,12]$ GeV (B, Υ range)

 $Z \rightarrow 6f$ ATLAS MC study

- order is different from real experimental searches: cuts \rightarrow trigger
- signal efficiency $\sim 6 7\%$

 $Z \rightarrow 6f$

our reproduction

- simulate signal and use the backgrounds in the ATLAS analysis
- use ATLAS MC study to choose recalibration factors, reproduce single step efficiencies

• $r_{\text{lep}} = 0.78$: detector effects for soft leptons, fake leptons

• $r_{trig} = 0.81$

- CL_S method for obtaining limits on $\sigma(pp \rightarrow Z \rightarrow A'h_D \rightarrow 4l + X)$: multiple 1 GeV signal bins with background and systematic uncertainties
- systematic uncertainties comparable to statistical uncertainty, dominant from r_{lep}

- $pp \to H \to aa, a \to VV, V \to f^+f^-$
- *a* pseudoscalar / scalar, *V* vector e.g. dark photon
- why: Higgs exotic decays to 3 or 4-particles are well studied
- assume $V \to f^+ f^-$ follows kinetic mixing BR(X), BR($a \to VV$) = 100 %, put limit on BR($H \to aa$)
- same triggers & cuts & backgrounds & statistical methods as in $Z \rightarrow 6f$, signal efficiency $\sim 3\%$
- other relevant papers:

[Izaguirre & Stolarski 2018, 2103.11684 ATLAS, 2407.20425 CMS, 2410.16781 ATLAS]

Future directions

- non-abelian dark gauge group e.g. SU(N) similar to QCD, with confinement, dark shower and form dark hadrons
- dark hadrons (composite) decay to SM fermions

Figure from [Bernreuther & Kahlhoefer & Kramer & Tunney 1907.04346]

Thank you!

Questions?

Backup slides

Figure and table from [2306.07413 ATLAS]

Trigger

• p_T requirements:

- O single electron (26 GeV)
- O single muon (26 GeV)
- O dielectron symmetric (17 GeV)
- O dimuon symmetric (14 GeV)
- O dimuon asymmetric (22 GeV and 8 GeV)
- O electron (17 GeV) and muon (14 GeV)
- O two electron (12 GeV) and muon (10 GeV)
- O electron (12 GeV) and two muon (10 GeV)
- $|\eta_e| < 2.47$ for electrons, $|\eta_{\mu}| < 2.7$ for muons

Event selection cuts

- Number of identified leptons satisfying the following cuts ≥ 4 :
 - $p_T^e > 4.5 \text{ GeV}, p_T^{\mu} > 3 \text{ GeV}$
 - O $|\eta_e| < 2.47, |\eta_\mu| < 2.7$
 - $|z_0 \sin \theta| < 0.5$. z_0 is the longitudinal impact parameter relative to the primary vertex.
 - Isolation: $E_{\text{cone20}}^e < 0.2p_T^e \& (p_T)_{\text{varcone20}}^e < 0.15p_T^e$ for electrons. E_{cone20}^e is the energy of all particles within a cone of $\Delta R = 0.2$ surrounding the electron. $(p_T)_{\text{varcone20}}^e$ is the scalar p_T sum of all charged particles (with $p_T > 1$ GeV and $|\eta| < 2.5$) that lie within a cone of radius $\Delta R = \min(10 \text{ GeV}/p_T^e, 0.2)$ around the electron.
 - Isolation: $(p_T)_{\text{varcone}_{30}}^{\mu} + 0.4E_{\text{neflow}_{20}}^{\mu} < 0.16p_T^{\mu}$ for muons. $E_{\text{neflow}_{20}}^{\mu}$ is the transverse energy of all neutral particle flow candidates within a cone of $\Delta R = 0.2$ surrounding the muon. $(p_T)_{\text{varcone}_{30}}^{\mu}$ is the scalar p_T sum of all charged particles (with $p_T > 0.5$ GeV and $|\eta| < 2.5$) that lie within a cone of radius $\Delta R = \min(10 \text{ GeV}/p_T^{\mu}, 0.3)$ around the muon.
- All possible 2 SFOC pairs need to satisfy $m_{4l} < m_Z 5$ GeV. Pass if there are no 2 SFOC pairs.
- Number of SFOC pairs ≥ 2 . Select the quadruplet with the smallest $m_{12} m_{34}$, where $m_{12} > m_{34}$ are the SFOC 2-lepton invariant masses. Also need all possible combinations in the 4 selected leptons to satisfy $\Delta R > 0.1$ for 2 same flavor leptons and $\Delta R > 0.2$ for 2 different flavor leptons.
- $m_{34}/m_{12} > 0.85$
- All possible SFOC 2-lepton invariant masses need to satisfy $m_{ll} \notin [0,5] \cup [8.761,11.105]$ GeV

$Z \rightarrow 6f$ truth efficiencies

$m_{A'}$	8 GeV	$15 \mathrm{GeV}$	$20 \mathrm{GeV}$
MC filter efficiency	57.7%	61.9%	64.4%
$ID \ge 4$	54.2%	53.5%	56.7%
$m_{4\ell} < m_Z - 5 \text{ GeV}$	97.9%	98.9%	99.4%
# SFOC lepton pairs ≥ 2	84.0%	85.3%	87.8%
$m_{\ell_3 \ell_4} / m_{\ell_1 \ell_2} > 0.85$	95.1%	95.3%	96.6%
No $m_{\ell^+\ell^-} < 5$ GeV or near m_{Υ}	95.3%	92.3%	90.9%
Overall signal efficiency	23.3%	24.6%	28.0%

$Z \rightarrow 6f$ reco efficiencies

$m_{A'}$	8 GeV	8 GeV	$15 \mathrm{GeV}$	$15 \mathrm{GeV}$	20 GeV	20 GeV
	ATLAS	Our	ATLAS	Our	ATLAS	Our
	Result	Result	Result	Result	Result	Result
MC filter efficiency	58.0%	57.7%	62.2%	61.9%	64.5%	64.3%
$ID \ge 4$	27.2%	27.1%	26.9%	27.1%	28.4%	29.1%
$m_{4\ell} < m_Z - 5 \text{ GeV}$	96.9%	98.4%	98.0%	99.2%	98.8%	99.6%
# SFOC lepton pairs ≥ 2	73.1%	72.6%	74.4%	73.8%	77.6%	76.1%
$m_{\ell_3 \ell_4}/m_{\ell_1 \ell_2} > 0.85$	86.2%	89.5%	86.7%	90.6%	87.4%	92.4%
No $m_{\ell^+\ell^-} < 5$ GeV or near m_{Υ}	92.0%	95.2%	91.7%	92.4%	90.1%	91.0%
Trigger	70.0%	66.8%	62.2%	63.6%	59.2%	59.4%
Overall signal efficiency	6.2%	6.3%	6.2%	6.4%	6.5%	7.1%

$Z \rightarrow 6f$ relative uncertainty

•
$$\sigma_{\text{eff,reco}} = \sqrt{\left(\frac{\Delta r_{\text{lep}}}{r_{\text{lep}}}\right)^2 + \left(\frac{\Delta r_{\text{trig}}}{r_{\text{trig}}}\right)^2 + 0.14^2 \approx 0.59}$$

•
$$\Delta r_{\text{lep}} = 0.11$$
, $r_{\text{lep}} = 0.78$

- $\Delta r_{\text{trig}} = 0.10, r_{\text{trig}} = 0.81$
- 0.14 theoretical uncertainty from perturbative calculations, hadronization, and parton distribution functions, same as in [2306.07413 ATLAS]

$H \rightarrow 8f$ relative uncertainty

•
$$\sigma_{\text{eff,reco}} = \sqrt{\left(4\frac{\Delta r_{\text{lep}}}{r_{\text{lep}}}\right)^2 + \left(\frac{\Delta r_{\text{trig}}}{r_{\text{trig}}}\right)^2 + 0.15^2 + 0.05^2} \approx 0.60$$

•
$$\Delta r_{\text{lep}} = 0.11$$
, $r_{\text{lep}} = 0.78$

- $\Delta r_{\text{trig}} = 0.10, r_{\text{trig}} = 0.81$
- 0.15 theoretical uncertainty from Higgs p_T distribution

[Chen & Gehrmann & Glover & Huss & Li & Neill et al 2019]

• 0.05 theoretical uncertainty from Higgs production rate [1610.07922]

Other relevant papers for $H \rightarrow 8f$

- [Izaguirre & Stolarski 2018] suggests using $\geq 5l$ final states
- [2103.11684 ATLAS] includes $\geq 5l$ final states but has higher p_T cuts & more stringent isolation requirements
- we estimate that the method in [Izaguirre & Stolarski 2018] combined with [2103.11684 ATLAS] gives slightly weaker limits
- [2407.20425 CMS] requires 4 muons instead of leptons & has higher p_T cuts, substantially weaker limits
- [2410.16781 ATLAS] has higher p_T cuts, weaker limits