

André Lessa (UFABC – São Paulo)

REI Workshop February 27th, 2025

In collaboration with M. Altakach, S. Kraml, S. Narasimha, T. Pascal, C. Ramos, Y. Villamizar and W. Waltenberger

arXiv: 2409.12942

SModelS: Basics

• Tool for reintrepretation of LHC results based on rescaling of simplified model (SMS) results:

- Pros:
 - Many SMS results have been produced by the experimental collaborations
 - No need for recasting or event simulation
 - Sometimes the only alternative for complex searches
 - Very fast!

• <u>Cons:</u>

- The rescaling extrapolates/interpolates signal efficiencies
- Results are limited by the available simplified models
- Results tend to be conservative and underestimate the experimental sensitivity

SModelS: Basics

- SModelS performs 3 main tasks:
 - 1. UV model \rightarrow sum of SMS
 - 2. Find the matching results in the database
 - 3. Compute constraints (limit setting)

• Main approximation:

SMS efficiencies are **assumed** to be driven by the properties of **on-shell particles** → masses, widths and quantum numbers

SModelS v2

• Versions 1 and 2 assumed SMS with "BSM number conservation":

SModelS v3

• Versions 1 and 2 assumed SMS with "BSM number conservation":

• Version 3: generalization to graphs

- Allows to describe most simplified model topologies
 - → more UV models can be explored!

SModelS Graphs

• Graph Representation:

• Text Representation:

```
(PV > gluino(1), su_L(2)), (gluino(1) > N1(3), q(4), q(5)), (su_L(2) > q(6), N1(7))
node number
```

André Lessa | UFABC

SModelS Graphs

- Graphs generated by the input model:
 - Used to describe the model signatures
 - Contain well defined particles, masses, widths,...

- Graphs stored in the database:
 - Used to describe experimental results
 - Contain signature-based (generic) particles

André Lessa | UFABC

SModelS Graphs

- Graphs generated by the input model:
 - Used to describe the model signatures
 - Contain well defined particles, masses, widths,...

• Challenging task: Graph "matching"

- Graphs stored in the database:
 - Used to describe experimental results
 - Contain signature-based (generic) particles

SModelS v3: Database

• Database of SMS results:

Run 2 - 13 TeV

In total, we have results from 45 ATLAS and 44 CMS 13 TeV searches.

- ATLAS efficiency maps: 28 analyses, 94 (of which 14 LLP) results, 1197 individual maps
- ATLAS upper limits: 40 analyses, 97 (of which 4 LLP) results
- CMS efficiency maps: 11 analyses, 62 results, 3555 individual maps
- CMS upper limits: 40 analyses, 153 (of which 3 LLP) results

Run 1 - 8 TeV

In total, we have results from 16 ATLAS and 20 CMS 8 TeV searches.

- ATLAS efficiency maps: 11 analyses, 36 results, 274 individual maps
- ATLAS upper limits: 14 analyses, 35 results
- CMS efficiency maps: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps
- CMS upper limits: 18 analyses, 58 (of which 3 LLP) results

61 ATLAS searches64 CMS searches~120 Simplified Models

SModelS v3: Database

• Database of SMS results:

Run 2 - 13 TeV

In total, we have results from 45 ATLAS and 44 CMS 13 TeV searches.

- ATLAS efficiency maps: 28 analyses, 94 (of which 14 LLP) results, 1197 individual maps
- ATLAS upper limits: 40 analyses, 97 (of which 4 LLP) results
- CMS efficiency maps: 11 analyses, 62 results, 3555 individual maps
- CMS upper limits: 40 analyses, 153 (of which 3 LLP) results

Run 1 - 8 TeV

In total, we have results from 16 ATLAS and 20 CMS 8 TeV searches.

- ATLAS efficiency maps: 11 analyses, 36 results, 274 individual maps
- ATLAS upper limits: 14 analyses, 35 results
- CMS efficiency maps: 9 analyses, 47 (of which 9 LLP) results, 980 individual maps
- CMS upper limits: 18 analyses, 58 (of which 3 LLP) results

61 ATLAS searches 64 CMS searches ~120 Simplified Models

André Lessa | UFABC

SModelS v3: Database

• Non-Z₂ results:

ID	Signature	Luminosity	SMS Topology	Type
Run 2 - 13 TeV				
ATLAS-EXOT-2019-03	Dijet resonance	$139 { m ~fb^{-1}}$	$pp ightarrow Z' ightarrow jj, bar{b}$	UL
ATLAS-EXOT-2018-48	$t\bar{t}$ resonance	$139 { m ~fb^{-1}}$	$pp \to Z' \to t\bar{t}$	UL
CMS-EXO-19-012	Dijet resonance	$137 { m ~fb^{-1}}$	$pp ightarrow Z' ightarrow jj, bar{b}$	UL
CMS-EXO-20-008	<i>b</i> -jet resonance	$138 { m ~fb^{-1}}$	$pp \to Z' \to b\overline{b}$	UL
CMS-EXO-20-004	Monojet	$137 { m ~fb^{-1}}$	$pp \to Z', S \to \chi \chi$	$\mathbf{E}\mathbf{M}$
ATLAS-EXOT-2018-06	Monojet	$139 { m ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow \chi \chi$	UL
ATLAS-SUSY-2018-22	Multi-jet plus	$139 { m ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow \chi \chi$	$\mathbf{E}\mathbf{M}$
ATLAS-SUSY-2018-13	Displaced jets	$139 { m ~fb^{-1}}$	$pp \rightarrow \tilde{\chi} \tilde{\chi} \rightarrow jjj, jjj; \dots$	$\mathbf{E}\mathbf{M}$
$\operatorname{Run} 1$ - 8 TeV				
CMS-EXO-16-057	<i>b</i> -jet resonance	$19.7 { m ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow b\overline{b}$	UL
CMS-EXO-12-059	Dijet resonance	$19.7 { m ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj$	UL
ATLAS-EXOT-2013-11	Dijet resonance	$20.3 { m ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj$	UL

Zprime

11

SModelS v3: Output

• Similar to v2 (except for the SMS text representation)

Version 2:	Version 3:
Element ID: 1	SMS ID: 1
Particles in element: [[[higgs]], [[W-]]]	<pre>SMS: (PV > N2(1),C1-(2)), (N2(1) > N1,higgs),</pre>
Final states in element: [N1, N1~]	$(C1-(2) > N1^{\sim}, W-)$

• But running SModelS within a notebook allows for a more user-friendly visualization of the results:

Physics Study: 2MDM

• Two mediator DM

Statistical Combination of ATLAS + CMS

Conclusions

• SModelS v3 opens the way for systematically using all Simplified Model results...

...allowing for further explorations of the full BSM model space!

- While the presentation of SMS results within the SUSY groups is well stablished, the same is not always true for other groups.
- Simplified Model results should always be presented as a function of all the SMS parameters and cover the relevant part of the SMS parameter space!

• A lot of work to be done!

- many results to be included in the database
- graphical visualization of the output
- "resolve" the primary vertex
- ...

For more information: https://smodels.github.io/

