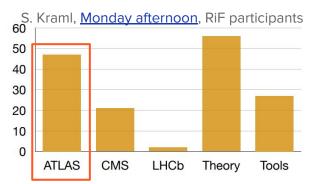


ML preservation: ATLAS' view


Tomasz Procter, LHC Reinterpretation Forum, February 2025

Tomasz Procter, LHC RiF, February 2025

Grant CHIST-ERA 2022/04/Y/ST2/00186 National Science Centre, Poland


Tomasz Procter, LHC RiF, February 2025

ML preservation: ATLAS' view

Tomasz Procter, LHC Reinterpretation Forum, February 2025

~1% of the collaboration is here: ~50 participants => 50 ATLAS views?

Tomasz Procter, LHC RiF, February 2025

Outline

- The past: what has ATLAS done so far
 - Analyses with BDTs
 - Analyses with NNs
 - Why so few?
 - General comments
- The future: problems and opportunities going forward:
 - Lower-level inputs
 - GN2

Published BDTs

<u>Analysis</u>	BDT Format	Location
ATLAS-SUSY-2016-16 (top-squark par prod. with one lep, jets, & MET 36fb ⁻¹)	xml files	HepData & SimpleAnalysis
ATLAS-SUSY-2018-22 (squarks and gluinos, with jets & MET, 139fb ⁻¹)	BDT as C++ code (petrify-BDT)	HepData & SimpleAnalysis
ATLAS-SUSY-2019-02 (pair prod. of sleptons & charginos decaying to 2 lep & neutralinos with mass splittings near the W mass, 139fb ⁻¹	ROOT BDT	HepData & SimpleAnalysis
ATLAS-SUSY-2020-16 (Searches for EW prod. of sparticles with compressed mass spectra, 139 fb ⁻¹)	ROOT BDT	SimpleAnalysis
ATLAS-SUSY-2023-26 (vector boson fusion signatures and missing transverse momentum, 139 fb ⁻¹)	ROOT BDT	HepData & SimpleAnalysis
ATLAS-EXOT-2022-04 (Search for neutral LLPs decay into displaced jets in the calorimeter in association with leps or jets 139 ⁻¹)	Files+python examples	HepData See talk this morning!

Published BDTs

Analysis		BDT Format Location		1	
ATLAS-SUSY-2016-16 top-squark par prod. with one lep, jets, & MET 36fb ⁻¹)		xml files	HepData	& SimpleAnalysis	
ATLAS-SUSY-2018-22 (squarks and gluinos, with jets & MET, 139fb ⁻¹)			1	SimpleAnalysis	
ATLAS-SUSY-2019-02 (pair prod. of sleptons & charginos decaying to splittings near the W mass, 139fb ⁻¹	Received broadly positive feedback from reinterpreters			SimpleAnalysis	
ATLAS-SUSY-2020-16 (Searches for EW prod. of sparticles with comp				lysis	
ATLAS-SUSY-2023-26 (vector boson fusion signatures and missing tra	nsverse momentum, 139 fb ^{_1})			SimpleAnalysis	
ATLAS-EXOT-2022-24 (Search for neutral LLPs decay into displaced jets in the calorimeter in association with leps or jets 139 ⁻¹)		Files+python examples	HepData	See talk this morning!	

Published BDTs

Analysis	BDT Format	Location	
ATLAS-SUSY-2016-16 (top-squark par prod. with one lep, jets, & MET 36fb ⁻¹)	xml files	HepData & SimpleAnalysis	
ATLAS-SUSY-2018-22 (squarks and gluinos, with jets & MET, 139fb ⁻¹)	BDT as C++ code	HepData & SimpleAnalysis	
ATLAS-SUSY-2019-02 (pair prod. of sleptons & charginos decaying to 2 lep & neutralinos with m splittings near the W mass, 139fb ⁻¹		HepData & SimpleAnalysis	
ATLAS-SUSY-2020-16 (Searches for EW prod. of sparticles with compressed mass spectra, 139 -			
ATLAS-SUSY-2023-26 (vector boson fusion signatures and missing transverse momentum, 139 f	<u>Used</u> in (published)	pMSSM scan paper	
ATLAS-EXOT-2022-24 (Search for neutral LLPs decay into displaced jets in the calorimeter in association with leps or jets 139 ⁻¹)	(both simpleAnalysis and RECAST)		
Tomasz Procter, LHC RiF, February 2025		7	

Published Neural Nets

<u>Analysis</u>	<u>NN Type</u>	NN format	Location
ATLAS-SUSY-2019-04 (R-parity violating SUSY with leps and many jets)	S vs B classifier DNN	ONNX	HepData & SimpleAnalysis
ATLAS-SUSY-2019-04 (SUSY MET + multi-bjets)	S vs B classifier DNN	ONNX	SimpleAnalysis
ATLAS-EXOT-2019-23* (neutral LLPs into displaced hadronic jets) *Also contained & published BDTs	S vs B BDT (event-level) S vs B NN (per-jet)	ONNX (low-level); Efficiency maps (high-level)	HepData
ATLAS-HDBS-2019-23 (Anomaly detection search for resonances decaying to Higgs+X)	VRNN for anomaly detection	Weights file (keras?); python example	HepData
+ More coming soon			

Published Neural Nets

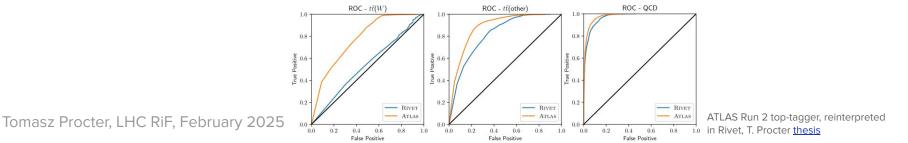
<u>Analysis</u>	<u>NN Type</u>	NN format	Location
ATLAS-SUSY-2019-04 (R-parity violating SUSY with leps and many jets)	S vs B classifier DNN	ONNX	HepData & SimpleAnalysis
ATLAS-SUSY-2019-04 (SUSY MET + multi-bjets)			
ATLAS-EXOT-2019-23* (neutral LLPs into displaced hadronic jets) *Also contained & published BDTs	Proved difficult to reinterpret (though this also applied to C&C regions of the analysis too)		
ATLAS-HDBS-2019-23 (Anomaly detection search for resonances decaying to Higgs+X)			
	detection	example	
+ More coming soon			

Published Neural Nets

Analysis		<u>NN Type</u>	NN format	Location
ATLAS-SUSY (R-parity violating SUSY w		S vs B classifier DNN	ONNX	HepData & SimpleAnalysis
ATLAS-SUSY (SUSY MET + multi-bjets)	-2019-04	S vs B classifier DNN	ONNX	SimpleAnalysis
ATLAS-EXC (neutral LLPs into displ *Also contained & publ	ished BDTs 한 2600	ATLAS Obs.limit(±10 [±] USY) { 	- Pivot shotton	1.00 RIVET+CONTUR, 95% CLs Obs RIVET+CONTUR, 95% CLs Obs 1.00 1.00 1.00
ATLAS-HDE	3S-2019-23 h for resonances decaying. 1400 1200 1000			1500 - 1500 - 1000 -
+ More c	coming soon		CheckMATE, stop-stop model, from K. Rolbiecki, Grenoble, June 2024	750
Tomasz Procter, LHC I	RiF, February 202!	1400 1600 1800 2000 2200 2400 2600	$\begin{array}{c} 1 \\ 2800 \\ m_{\tilde{g}}[\text{GeV}] \end{array}$	0 1000 1200 1400 1600 1800 2000 2200 2400 2600 <u>g</u> Mass [GeV]

Published ML - Comments on scarcity

• Publishing weights is not the norm:



0

- **7*** published analyses on glance tag LWTNN **0** published lwtnn files.
- **32** analyses with "BDT" in a plot or other entry on Hepdata only **7** come with weights.

Tends to happen when an analysis team really cares about reinterpretation.

- Do we need to reconsider rules/procedures on aux. data or similar?
 - What if HEPdata gets delayed?
 - Can we give better credit to particular analysis teams that have gone above and beyond?
- Again, general reinterpretation problem not unique to (though worse in the context of) ML.
- Run 2: several networks used across many analyses: **0** public.
 - E.g. W-tagger, top-tagger, MCBOT, "belong" to CP groups
 - Some include substructure dependence, reinterpretability is not trivial.

11

Published ML - General comments

- ~10 analyses is still LHC-leading!
- Several examples implemented and **validated** in multiple frameworks
 - We're at the stage where we assume a straightforward NN/BDT, with straightforward input Ο features, should work.
- LH ML-reuse guidelines (arXiv:2312.14575) were written almost entirely on the basis of these ATLAS analyses.
 - Emphasis on: keeping reuse in mind; validation material and documentation. Ο
 - Important in all reinterpretation efforts; critical for ML. Ο
- Lots of formats/locations:
 - So sorry if I've missed anything! \bigcirc
 - How can we standardise? \cap
 - If the SimpleAnalysis code is on hepdata, why isn't the ONNX file it calls? Ο
- What even is the ideal format?
 - Python code may have many version dependencies. 0
 - Containers are most "eternal", but hard to use at scale inside other tools. 0
 - Onnx as the best option (for now?) -Ο

This was the solution

the guidelines came t

Published ML - some questions for ATLAS

- What would the procedure for sharing an ATLAS-wide tool look like?
 - If it comes with the paper/note that introduces the technique, where is the validation?
- SimpleAnalysis codes have been a key mechanism for getting these out.
 - (Nothing especially unique to SimpleAnalysis, any similar framework would probably work given the same (fantastic) institutional support)
 - What's going to be the status of this going forward?
- Can we make it easier to get these on Hepdata?
 - If the SimpleAnalysis code is provided, can the weights be, too?
- How do we make sure that weights are safely stored internally.
 - We all know what can happen when one important person leaves physics/ATLAS.
 - But this can be even scarier in the ML context.
 - I know of at least one (albeit 36 fb⁻¹) analysis where weights used in the paper were lost, within a couple of years of publication.
 - Should they all end up in RECAST? Anywhere imbetween?

Going Forward

- Trend in HEP ML usage is to use more-and-more, lower-and-lower level input features
- Typically require proper detector-sim to get right
 - They may be almost meaningless to those outside the experiment.
- So just publishing the weights alone may not make the analysis re-usable.
- New ML strategies will also make life harder...

What to do?

- Trend in HEP ML usage is to use more-and-more, lower-and-lower level input features
- Typically require proper detector-sim to get right
 - They may be almost meaningless to those outside the experiment.
- So just publishing the weights alone may not make the analysis re-usable.
- New ML strategies will also make life harder...

What to do?

- 1. (multi-dimensional) efficiencies?
 - E.g. <u>ATLAS-EXOT-2019-23</u>.
 - 6D parameterised efficiencies.
 - BUT: might not always be appropriate for all BSM classifiers.
 - How many dimensions is enough?

- Trend in HEP ML usage is to use more-and-more, lower-and-lower level input features
- Typically require proper detector-sim to get right
 - They may be almost meaningless to those outside the experiment.
- So just publishing the weights alone may not make the analysis re-usable.
- New ML strategies will also make life harder...

What to do?

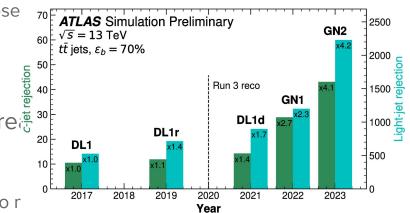
- 2. Surrogate networks/BDTs:
 - ML trained to replicate the output of a more complex network using truth-level features.
 - In the reinterpretation setting, can "cheat" with extra truth-level information.
 - See talk this morning
 - Once again, LLPs lead the way...
 - Exciting to see where this goes...
 - But one surrogate network per analysis will be a lot of work.

Tomasz Procter, LHC RiF, February 2025

- Trend in HEP ML usage is to use more-and-more, lower-and-lower level input features
- Typically require proper detector-sim to get right
 - They may be almost meaningless to those outside the experiment.
- So just publishing the weights alone may not make the analysis re-usable.
- New ML strategies will also make life harder...

What to do?

- 3. Does this make RECAST *more* important?
 - For unusual signatures, efficiencies and even surrogates may struggle.
 - The only environment where the network's actual output could be tested.
 - Have we done any tests of ML-based analyses in RECAST?



Run 3: GN2

Should be accompanied by the release of training dataset –

ATLAS's "blue ribbon" ML project – factor two performance for FTAG

- With only a few extra truth-level variables, Ο multi-dimensional efficiency maps, surrogates etc. could potentially be "outsourced" to those interested.
- ATLAS-wide, won't place a huge extra burden on small analysis teams.
- This is not far from what most codes alre do with *b*-tagging.
 - But should allow us to do it better. \bigcirc
 - And the wider GN-family of algorithms will do r Ο than just b/c-tagging.

Conclusion

Conclusions

- ATLAS has published 10+ sets of weights for ML models
 - Provided the material for most of the early testing by the reinterpretation community
 - Several successful examples!
- How do we take the next step from this?
 - Support for analysis teams/procedural simplifications?
 - How are things preserved internally?
 - There will always be some non-resuable networks:
 - How do we deal with networks based on very low-level features?
- GN2 dataset will be very interesting!

