MadAnalysis 5: Status & Plans

On behalf of Ma5 Team RiF@CERN 2025

Search for new physics

Image credit: Sherpa

Smeared MC \oplus observed data

Jack Y. Araz

MadAnalysis 5 in a nutshell

Exploring the full potential of the LHC (for BSM) Designing new analyses = probing new ideas Recasting existing analyses = viability of models Data preservation beyond raw data Analyses and their results = the LHC legacy

Conte, Fuks & Serret (CPC`13)

Conte & Fuks (IJMPA`19)

JYA & Fuks (in prep.)

Making the best of the LHC!

MadAnalysis 5 in a nutshell

- ♦ A framework for phenomenological analyses
- Any level of sophistication: partonic, hadronic, detector, reconstructed
- ♦ Several input formats: STDHEP, HEPMC, LHE, LHCO, ROOT (from Delphes)
- ◆ User-friendly, flexible & Fast!!! (Coming soon: even faster multi-core analysis!)
- Interfaces several HEP packages: MadGraph, FastJet, Delphes, pyhf, SFS

CMS (JHEP`21)

What is MadAnalysis 5?

MadAnalysis 5 in a nutshell

(Re)interpretation of an analysis

Signal Events

(Re)interpretation of an analysis

5

	About Q Submission Help Pile Formats Sig.	
	Last updated on 2022-05-19 09:35 III Accessed 55313 times	ON
Version 4 modifications: Adding likelihoods		
Table 1 10.17182/hepdata.89413.v4/t1	https://www.hepdata.net/reco	N
Overview of HEPData Record		2
Background Fit results:		
• <u>CRs</u> • <u>VRs</u> • <u>inclusive DF-0J SRs</u> • <u>inclusive DF-1J SRs</u> • <u>inclusive SF-0J SRs</u> • <u>inclusive SF-1J SRs</u> Kinematic distributions in VRs: • m_{T2} <u>in VR-top-low</u> • m_{T2} <u>in VR-top-high</u> • E_T^{miss} <u>in VR-WW-0J</u> • E_T^{miss} <u>in VR-WW-0J</u> • E_T^{miss} <u>sig in VR-VZ</u> • E_T^{miss} <u>sig in VR-VZ</u> • E_T^{miss} <u>sig in VR-top-WW</u> Kinematic distributions in SRs:	HEPData	A Fuks, Kraml; uckley, Fuks et a
 m_{T2} in SR-SF-0J m_{T2} in SR-SF-1J m_{T2} in SR-DF-0J m_{T2} in SR-DF-1J Systematic uncertaities: dominant systematic uncertainties in the inclusive SRs 		JYA, Frank, Fu extrapola lihoods
5	Jack Y. Araz	* S

Reusable analysis framework

Blackbox Implementation ATLAS Detector JHEP 12 (2019) 060 DOI: 0.1007/JI-EP1019 DEFIN-EP-2019-142 January 31, 2020 Simulation Scarch for bottom-squark pair production with the ATLAS detector in final states containing Higgs ns, b-jets and missing transverse mo Recast

Dumont, Fuks, Kraml, et. al. EPJC '15

New Analyses & Techniques for PAD

Simplified likelihoods

Third moment expansion

 $\bar{n}_b^i :=$ the central value of the background $A_i :=$ the effective sigma of the background uncertainty $C_i :=$ asymmetry of the background uncertainty

Buckley, Citron, Fichet, Kraml, Waltenberger, Wardle; JHEP '18

Asymmetric Uncertainties

CMS-SUS-19-006 p \tilde{g} $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1$

$$\mathscr{L}(\mu,\theta) = \left[\prod_{i \in \text{bins}} \text{Poiss}\left(n^{i} | \mu n_{s}^{i} + n_{b}^{i} + \theta^{i} \sigma_{\text{eff}}^{i}(\theta^{i})\right)\right] \cdot \mathscr{N}\left(\theta | 0, \theta^{i}\right)$$

$$\sigma_{\text{eff}}^{i}(\theta^{i}) = \sqrt{\sigma_{i}^{+}\sigma_{i}^{-} + (\sigma_{i}^{+} - \sigma_{i}^{-})(\theta^{i} - n_{b}^{i})}$$

New analyses & techniques for PAD

ATLAS-SUSY-2018-16 (soft di-lepton + \mathcal{E}_T) & ATLAS-SUSY-2019-09 (3 leptons + \mathcal{E}_T)

- Standard selection
- → IOSSF lepton pair, with/without jets
- → Object isolation, lepton properties, jigsaw, on-shell Z.; bins in $m_{\ell\ell}$
- \rightarrow PYHF model file (full likelihoods for limit settings = signal region combination) [interfaced in MA5 for more than three years]
- Recasting challenges
 - Using **RESTFRAMES** (cf. jigsaw variables) = strong impact on exclusions Event generation details important for compressed spectra

Mány SRs; sub-percent/sub-permile efficiencies (per bin)

- 7.5 Mevents generated
- \rightarrow numerical accuracy
- NEW Use of HEPDATA tabulated efficiencies

• Signal region combination crucial (dozens of SRs with low

• Signal rate and shape important (NLO+NLL; matrix-element merging)

• Outstanding agreement both for exp. and obs. results

Analysis Combination

The TACO approach - testing analysis correlations

- Combination of analyses
 - \rightarrow Overlap matrix = approximate correlation matrix
 - \rightarrow Path finding (set of non-overlapping regions) [weighted hereditary depth-first search algorithm]

Application I: the ATLAS 2015 pMSSM-19 scan

- 100s SRs: a few matter
- Going beyond ATLAS/CMS combinations
- Always a specific driving SR \rightarrow Not powerful enough alone $\rightarrow O(10)$ regions combined

Application 2: MSSM

- Considered analyses: jets $+ \mathbb{Z}_T$
 - \rightarrow Combination possible (non-overlapping SRs exist)
- Advantage of quantified measure of overlap
 - → bounds more stringent by 100s GeV

800

600

Towards global sensitivity

 $\mathscr{L}' = \mathscr{L}_{ATLAS} \oplus \mathscr{L}$

JYA, SciPost '24

Full likelihood

Simplified likelihood with effective sigma model

A combination of analyses, rather than regions, contains much more information!

Upgrading SFS

Further SFS development: jet substructure tools

- Embedding of all jet substructure tools in the data format
- Interface with HEPTOPTAGGER
- Multiple definitions for a given type of objects → tight, medium, loose leptons, etc.
- Technical details to be released
- Follow us on GitHub (the substructure branch)

JYA, Fuks (in progress)

40 35 20 15 10 5 0	Normalized Number of Events	[JYA, Buckley & Fuks (EPJC`23)]	
0			

Uncertainties & Multi-weights

The long awaited upgrade: uncertainties

- Full treatment of multi-weighted events
- Weight propagation (cut-flows, histograms, etc.)
- Status for histograms
 - → C++ data format updated (rewritten from scratch)
 - → CLI rewritten
- Cut-flows: to be done
- Validation in progress → Scale uncertainties correctly handled in histograms
- Follow us on GitHub (the *multiweight* branch)

JYA, Arina, Fuks, Munoz, Panizzi & Tentori (in progress: 2025)

Machine Learning @ Ma6

Machine learning in MADANALYSIS

- ONNX interface
 - → NN export/import
 - → ML-based ATLAS search recasting

[Fuks, Goodsell, Laforge & Oudot (in progress)]

Automatic S/B classifiers (BDTs, NNs)

[Cornell, Fuks, Goodsell & Ncube (in progress)]

 Improving the SFS with Lorenzetti Showers → NN-based efficiencies / tagging performance → Impact on LHC recasting

[Fuks, Goodsell & LPNHE group (in progress)]

16

Longer term future

Recasting developments

- Embedding SM measurements for LHC recasting (à la CONTUR, with different statistical treatment)
 - Full framework to constrain SMEFT
- Third MADANALYSIS 5 workshop in 2026 (CERN? Korea? China?)
 - \rightarrow Crucial for extending the database of recast analyses

An idea? Feel free to reach out!

Thanks to the RiF community!

Krzystof Rolbiecki

Andy Buckley

Tomasz Procter

Martin Habedank

HackAnalysis 2 Mark Goodsell

Joe Egan

