

Current CERN platforms for reproducible and interactive scientific analysis

D. Castro, A. Delgado, E. García, **G. Guerrieri**, B. Jones, A. Sciabà, T. Simko, M. Schulz, E. Tejedor (CERN IT) February 26th 2025

What is an analysis facility?

Analysis Facilities Whitepaper

Analysis Facilities White Paper

D. Ciangottini^{1,b}, A. Forti^{2,b}, L. Heinrich^{3,b}, N. Skidmore^{4,b}, C. Alpigiani⁵, M. Aly,², D. Benjamin⁶, B. Bockelman⁷, L. Bryant⁸, J. Catmore⁹, M. D'Alfonso³⁵, A. Delgado Peris¹⁷, C. Doglioni², G. Duckeck¹⁰, P. Elmer¹¹, J. Eschle¹², M. Feickert¹³, J. Frost¹⁴, R. Gardner⁸, V. Garonne⁶, M. Giffels³⁶, J. Gooding¹⁵, E. Gramstad⁹, L. Gray¹⁶, B. Hegner³¹, A. Held¹³, J. Hernández¹⁷, B. Holzman¹⁶, F. Hu⁸, B. K. Jashal^{18,19}, D. Kondratyev²⁰, E. Kourlitis³, L. Kreczko²¹, I. Krommydas²², T. Kuhr¹⁰, E. Lancon⁶, C. Lange²³, D. Lange¹¹, J. Lange³⁴, P. Lenzi¹, T. Linden²⁴, V. Martinez Outschoorn²⁷, S. McKee²⁵, J. F. Molina¹⁷, M. Neubauer²⁶, A. Novak³⁵, I. Osborne¹¹, F. Ould-Saada⁹, A. P. Pages²⁸, K. Pedro¹⁶, A. Perez-Calero Yzquierdo¹⁷, S. Piperov²⁰, J. Pivarski¹¹, E. Rodrigues²⁹, N. Sahoo³⁰, A. Sciaba³¹, M. Schulz³¹, L. Sexton-Kennedy¹⁶, O. Shadura³², T. Šimko³¹, N. Smith¹⁶, D. Spiga¹, G. Stark³³, G. Stewart³¹, I. Vukotic⁸, G. Watts⁵,

^b Editor, ¹INFN, ²University of Manchester, ³Technische Universität München, ⁴University of Warwick ⁵University of Washington ⁶Brookhaven National Laboratory ⁷Morgridge Institute for Research ⁸University of Chicago ⁹University of Oslo ¹⁰Ludwigs-Maximilians Universität München ¹¹Princeton University ¹²Syracuse University ¹³University of Wisconsin-Madison ¹⁴University of Oxford ¹⁵Technische Universität Dortmund ¹⁶FNAL ¹⁷CIEMAT ¹⁸IFIC ¹⁹TIFR
 ²⁰Purdue University ²¹University of Bristol ²²Rice University ²³Paul Scherrer Institute ²⁴Helsinki Institute of Physics

²⁵ University of Michigan ²⁶ University of Illinois at Urbana-Champaign ²⁷ University of Massachusetts Amherst ²⁸ IFAE ²⁹ University of Liverpool ³⁰ University of Birmingham ³¹ CERN ³² University of Nebraska-Lincoln ³³ SCIPP UC Santa Cruz ³⁴ University of Hamburg ³⁵ Massachussets Institute of Technology ³⁶ Karlsruhe Institute of Technology

What is an analysis facility?

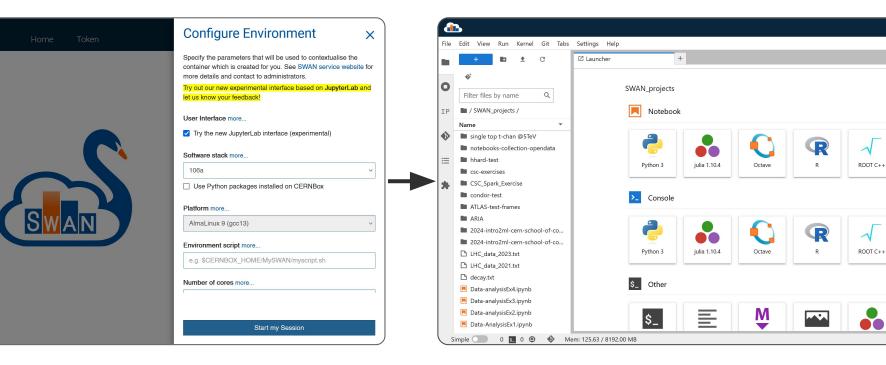
Analysis Facilities Whitepaper

Analysis facility (AF): infrastructure and services that provide integrated data, software and computational resources to execute one or more elements of an analysis workflow.

- Perform fast research iterations on large datasets interactively.
- Convert interactive to batch-schedulable workloads.
- Interact with the WLCG and scale outside of the facility on occasion.
- Reproducibly instantiate desired software stack.
- Collaborate in a multi-organisational team.
- Efficiently train machine learning models for HEP.

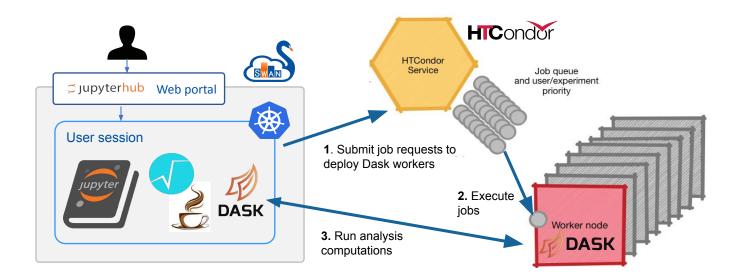
The CERN ecosystem A facility of Analysis Facilities

SWAN at CERN Service for Web based ANalysis


Jupyter notebooks technology

- Interactive analysis with a web browser
 - No local installation is needed
 - Based on Jupyter Notebooks
 - Calculations, input data and results "in the Cloud"
- Good for data analysis and exploration, but also for teaching
- Easy sharing of scientific results: plots, data, code
- Added value: integration with CERN infrastructure and services!

SWAN at CERN Spinning up the service

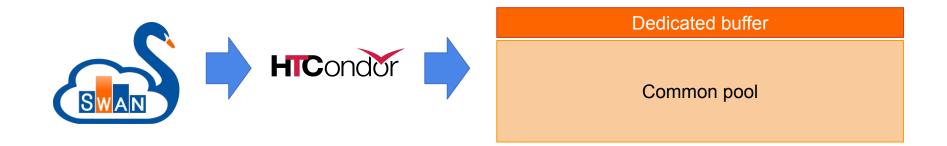


The CERN pilot Analysis Facility

Scaling columnar interactive analysis to batch

Leverages CERN resources (HTCondor)

• Via RDataFrame / coffea + Dask


ref.

The CERN pilot Analysis Facility

Scaling interactive analysis to batch

Pilot's interactive jobs benefit from dedicated resources in the CERN HTCondor pool

- Dedicated buffer of ~1.2k cores for quick (number) allocation of resources
- Extra resources from common pool, job start time subject to experiment quotas

Best test users for the pilot

User's profile

- Have a columnar-based analysis (**RDataFrame** or **Coffea**) that leverages Dask.
- Be able to submit condor batch jobs on lxplus.
- Have data stored on eos.

What feedback we would like to have

- Clarity of documentation.
- What you like, what you don't like and what you would like.
- Signal any possible improvements so that it suits better the needs of an analyser.
- Report issues with interface, resource allocation, analysis execution, data access, software, ...

More information on SWAN and the pilot at https://swan.docs.cern.ch

Do you have a use case for the pilot? Join the <u>Mattermost Channel</u>

(First join the IT-dep mattermost team)

(Re)interpretation of the LHC results - Giovanni Guerrieri - February 26th 2025

What is an analysis facility? A quick recap

Analysis Facilities Whitepaper

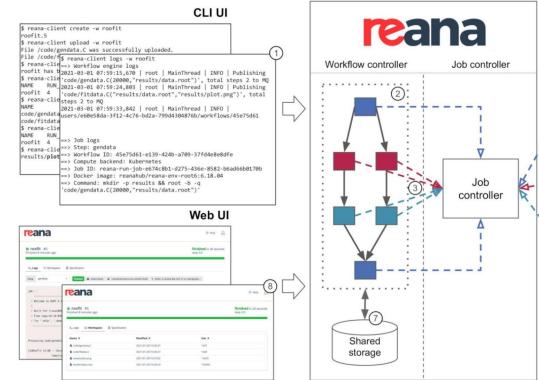
Analysis facility: infrastructure and services that provide integrated data, software and computational resources to execute one or more elements of an analysis workflow.

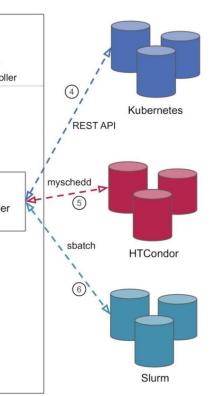
- V Perform fast research iterations on large datasets interactively.
- 🔽 Convert interactive to batch-schedulable workloads.
- **V** Interact with the WLCG and scale outside of the facility on occasion.
- ? Execute desired analysis workflows reproducibly.
- ? Collaborate in a multi-organisational team.
- ? Efficiently train machine learning models for HEP.

REANA Reproducible research data analysis platform

REANA is a reproducible analysis platform allowing scientists to run **declarative computational data analysis** pipelines on containerised compute clouds.

REANA was built with the goal of **fostering computational reproducibility**.


It has installations and code distributions in Europe (e.g. <u>AIP</u>) and US (e.g. <u>UChicago</u>)



ref.

REANA Reproducible research data analysis platform

Multiple compute backends:

- Kubernetes
- HTCondor
- Slurm

Multiple workflow languages:

- CWL
- Serial
- Snakemake
- Yadage

Multiple means of use:

- Command-line client
- Web UI

ref.

REANA A quickstart

workflow/snakemake/Snakefile

"results/data.root",

events=20000

mkdir -p results

data="results/data.root"

"results/plot.png"

"results/data.root"

"docker://docker.io/reanahub/reana-env-root6:6.18.04"

root -b -q 'code/gendata.C({params.events}, \"{output}\")'

"docker://docker.io/reanahub/reana-env-root6:6.18.04"

"root -b -q 'code/fitdata.C(\"{input.data}\",\"{output}\")'"

"results/plot.png"

rule all:

input:

rule gendata:

output:

params:

shell:

rule fitdata:

input:

output:

shell:

container:

container:

.....

Structure your analysis

inputs:

files:

directories

parameters:

type: snakemake

workflow:

outputs:

files:

- code/gendata.C

- code/fitdata.C

workflow/snakemake

- results/plot.png

file: workflow/snakemake/Snakefile

more

Select a REANA cluster...

\$ export REANA SERVER URL=https:// reana.cern.ch/ \$ export REANA ACCESS TOKEN=XXXXXXX

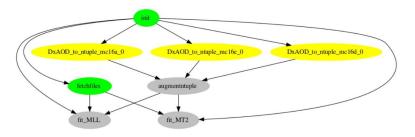
... or install your own

install kubectl 1.19+, kind 0.9+ and input: workflow/snakemake/inputs.yaml helm 3.0+ \$ sudo dpkg -i kubectl*.deb kind*.deb kubernetes-helm*.deb # create Kubernetes cluster (or use your own!) \$ wget https://raw.githubusercontent.com/ reanahub/reana/maint-0.9/etc/kindlocalhost-30443.vaml \$ kind create cluster --config kindlocalhost-30443.yaml \$ wget https://raw.githubusercontent.com/ reanahub/reana/maint-0.9/scripts/prefetchimages.sh \$ sh prefetch-images.sh # deploy REANA using Helm \$ helm repo add reanahub https:// reanahub.github.io/reana \$ helm repo update \$ helm install reana reanahub/reana --wait # create an admin user \$ wget https://raw.githubusercontent.com/ reanahub/reana/maint-0.9/scripts/createadmin-user.sh \$ sh create-admin-user.sh default reana john.doe@example.org mysecretpassword

more

Run your analysis

create new virtual environment \$ virtualenv ~/.virtualenvs/myreana \$ source ~/.virtualenvs/myreana/bin/ activate # install REANA client \$ pip install reana-client # create new workflow \$ reana-client create -n my-analysis \$ export REANA_WORKON=my-analysis # upload input code and data to workspace \$ reana-client upload ./code ./data # start computational workflow \$ reana-client start # check its progress \$ reana-client status # list workspace files \$ reana-client ls # open interactive notebook session \$ reana-client open jupyter # download output results \$ reana-client download results/plot.png more


REANA

Usage example: pMSSM reinterpretation of ATLAS Run-2 searches

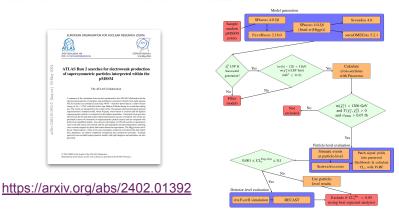

🤞 GitLab 🛛 🗮 Menu	🕒 🛩 🦳 Search GitLab	Q D3 11	~ 1200 @ * ~ 🔃
susy	recast-atlas > susy		
 Subgroup information Epics Issues 	S susy ⊕ Group ID: 17267 ੴ		۵ -
Merge requests 0	RECAST for ATLAS SUSY		
Packages & Registries Analytics	Subgroups and projects Shared projects Archived projects	Search by name	Updated date ~
Q Web	P pmssm-cast Φ		8 <u>8</u> 1
	ANA-SUSY-2020-16 D RECAST specs for SUSY EWK with multiple b-jets analysis (ANA-SUSY-2020-16)	★ 0	21 hours ago
	ANA-SUSY-2018-16 @ Reporter RECAST specs for ANA-SUSY-2018-16	*1	2 weeks ago
	ANA-SUSY-2019-02 Recast workflow specs for 2L0J second wave analysis	* 0	1 month ago
	ANA-SUSY-2018-05 T RECAST workflow specs for SUSY 2L+Jets analysis	* 0	1 month ago
	ANA-SUSY-2018-41 Recast space for EWK Fully Hadronic analysis ANA-SUSY-2018-41	* 0	1 month ago
	ANA-SUSY-2019-17 D RECAST specs for SUSY Staus 2nd wave analysis (ANA-SUSY-2019-17)	*1	1 month ago
	ANA-SUSY-2018-32 ① RECAST specs for first wave 2L0J	* 0	1 month ago
	ANA-SUSY-2020-27 RECAST specs for SUSY Strong SS/3L 2nd wave analysis (ANA-SUSY-2020-27)	* 0	2 months ago
	AMA-SUSY-2018-09 T RECAST specs for Incl SS analysis (ANA-SUSY-2018-09)	* 0	2 months ago
	A ATLAS-CONF-2018-041	* 2	3 months ago

Figure 1. A screenshot of the ATLAS SUSY group analyses preserved on GitLab. Each repository is labeled with the internal ATLAS analysis identifier and contains both workflow files and additional data files needed for the computational processing.

https://arxiv.org/abs/2403.03494

Figure 2. A typical pMSSM workflow. The computational runtime is about 10 minutes without systematics (test payload) and about 10 hours with all systematics (real payload).

More information on REANA at <u>https://www.reanahub.io/</u>

What is an analysis facility? A quick recap

Analysis Facilities Whitepaper

Analysis facility: infrastructure and services that provide integrated data, software and computational resources to execute one or more elements of an analysis workflow.

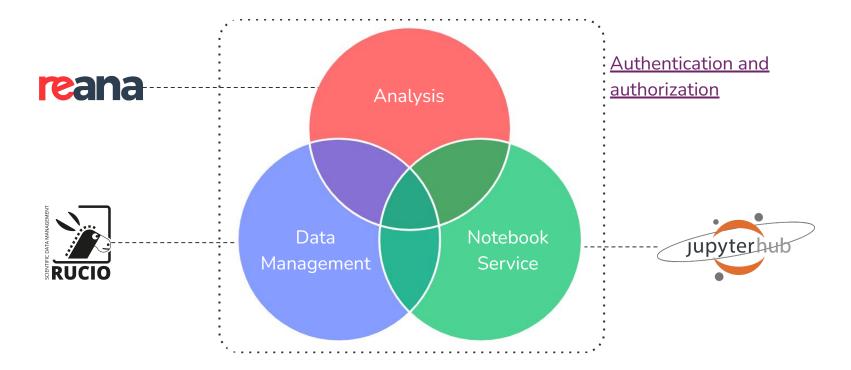
- V Perform fast research iterations on large datasets interactively.
- 🔽 Convert interactive to batch-schedulable workloads.
- 🚺 Interact with the WLCG and scale outside of the facility on occasion.
- 🔽 Execute desired analysis workflows reproducibly.
- ? Collaborate in a multi-organisational team.
- ? Efficiently train machine learning models for HEP.

I don't have a CERN account 😞

ESCAPE: European Science Cluster of Astronomy and Particle Physics

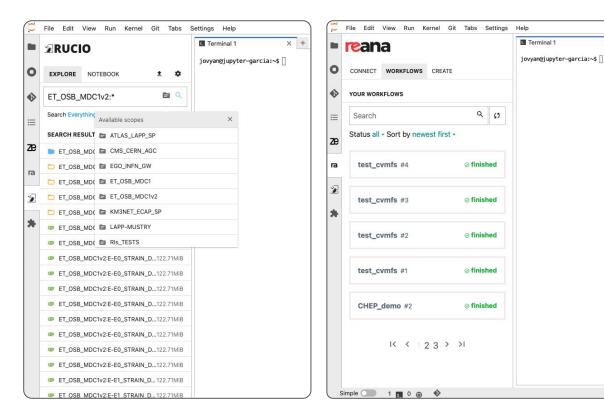
Consortium of 31 members, including:

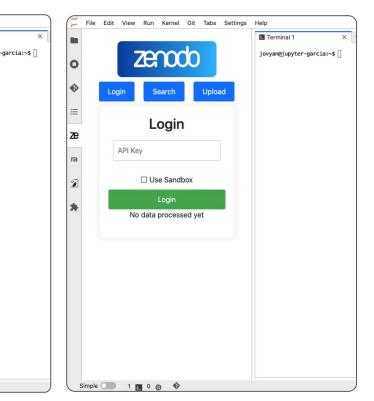
- 10 <u>ESFRI</u> projects & landmarks: **CTA, EST, FAIR, HL-LHC, KM3NeT, SKA, LSST, VIRGO, ESO, JIVE**
- 2 pan-European International Organizations: CERN and ESO
- 2 European Research Infrastructures: EGO and JIV-ERIC
- 4 supporting European consortia: APPEC, ASTRONET, ECFA and NuPECC


Budget: 15.98 M€

Duration: 48 months (1/2/2019 -31/1/2023)

ESCAPE has received funding from the European Union's Horizon 2020 research and innovation programme under **Grant Agreement no. 824064**.




The CERN Virtual Research Environment A CERN-agnostic version of SWAN

User's interactions with the VRE

Comparison (is the thief of joy)

	/>	/		
	Available at the click of a button 🗹	🔽 Available at the click of a button		
	Data persistence 🔽	🔽 Data persistence		
	No account restrictions 🗙	🔽 No account restrictions		
	Change easily the software stack 🔽	🗹 Change easily the software stack		
	Access >200 cores 🔽	X Access >200 cores		
	Access to batch 🔽	X Access to batch		
	Access to GPUs 🗹	X Access to GPUs		
Production service	Integration with Data Lake tech. 🗙	🔽 Integration with Data Lake tech.	Proof of concept platform	
Can sustain heavy workloads	Integration with REANA 🗙	✓ Integration with REANA	Features more functionalities	
		/		

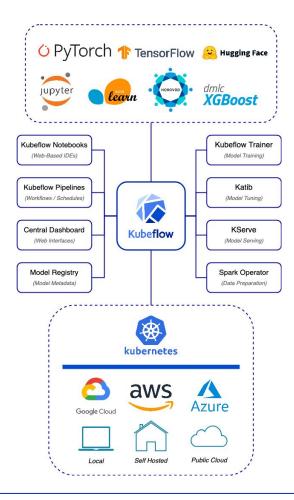
More information on the VRE at <u>https://vre-hub.github.io/</u>

What is an analysis facility? A quick recap

Analysis Facilities Whitepaper

Analysis facility: infrastructure and services that provide integrated data, software and computational resources to execute one or more elements of an analysis workflow.

- V Perform fast research iterations on large datasets interactively.
- Convert interactive to batch-schedulable workloads.
- 🚺 Interact with the WLCG and scale outside of the facility on occasion.
- 🔽 Execute desired analysis workflows reproducibly.
- Collaborate in a multi-organisational team.
- ? Efficiently train machine learning models for HEP.



ml.cern.ch Run machine learning workloads

What is Kubeflow?

Kubeflow is a community and ecosystem of **open-source** projects to address each stage in the ML lifecycle

- **Community & Ecosystem:** Open-source projects addressing each stage of the ML lifecycle.
- **Purpose:** Simplifies, makes AI/ML on Kubernetes portable and scalable.
- Audience: Researchers, data scientists, ML engineers, developer teams.
- Modular & Scalable Tools: From building to deploying ML models for AI applications.

ref.

More information on ml.cern.ch at https://ml.cern.ch/

Summary

Analysis facility: infrastructure and services that provide integrated data, software and computational resources to execute one or more elements of an analysis workflow.

- V Perform fast research iterations on large datasets interactively.
- 🔽 Convert interactive to batch-schedulable workloads.
- 🚺 Interact with the WLCG and scale outside of the facility on occasion.
- 🔽 Execute desired analysis workflows reproducibly.
- 🔽 Collaborate in a multi-organisational team.
- Efficiently train machine learning models for HEP.

