Assessing the **correlation** between **MadAnalysis and Rivet** implementations

Reinterpretation Forum Workshop 2025

OpenMAPP

Martin Habedank 27th February 2025

HEALTH

A D V I S O R Y

The following expresses my very own perspectives from a pheno point of view.

Motivation

- Martin Habedank 3
- Cross-validation between implementations of analyses in different tools
- \rightarrow <u>Contur</u> uses manual separation into orthogonal pools by e.g. multiplicity
- TACO method: \rightarrow SciPost Phys. 14, 077 (2023)
 - Statistically combined multiple \rightarrow <u>MadAnalysis</u>/ \rightarrow <u>SModelS</u> analyses

Motivation

Martin Habedan

REI WG — plans and action items (2/2)

- * Enhance visibility and recognition for auxiliary material provision \rightarrow **RAMP** seminars, ideally in active collaboration with the other WGs. [organisers needed]
- Generally interact with other LPCC WGs, be as transversal a group as possible, have joint sessions in addition to generic REI workshops. (frequency of meetings t.b.d.)
- * On the pheno side, provide active feedback to the experiments.

Work on interoperability of tools.

 \rightarrow Sabine Kraml @ Mon (LHC BSM WG)

- Run events against all searches/measurements implemented in
 - MadAnalysis5 v1.9.60
 - CheckMATE v2.0.34
 - Rivet v3.1.5/Contur v2.2.1

and calculate cross section σ_{95} needed to exclude the events at 95% CL

→Manuel Kunkel @ Tue

Correlation/Overlap

How to find a suitable analysis for the study

VA VIE	

HEPData	🔂 About 🔀 Submission Help 🕒 File Formats 🕫 Sign in
	Q analysis:Rivet AND analysis:MadAnalysis Search Reset search Advanced
1 Max results \bullet 17 Sort by \bullet 1 ² / _A Reverse or	der Showing 2 of 2 results
Date	
2016 2017	Rivet Analysis MadAnalysis Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV The CMS collaboration Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; et al.
Collaboration	Phys.Rev.D 96 (2017) 032003, 2017.
ATLAS 1 CMS 1	(a) data tables match query
Subject_areas	
hep-ex 2	🗠 Rivet Analysis 🗠 MadAnalysis 😂 Smodels Search for squarks and gluinos in final states with Jets and missing transverse momentum at $\sqrt{s}=$ 13 TeV with the ATLAS detector
Phrases	The ATLAS collaboration Aaboud, Morad; Aad, Georges; Abbott, Brad; et al.
Supersymmetry 2	Eur.Phys.J.C 76 (2016) 392, 2016.
Inclusive 1 Proton Scattoring	🖹 Inspire Record 1458270 % DOI 10.17182/hepdata.74253
SUSY	A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s} = 13$ TeV protonproton collisions at the Large Hadron Collider. No excess above
hadronic 1	the Standard Model background expectation was observed in 3.2 tb of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mas
Next 5 Show 7	
Reactions	
P P> GLUINO GLUINO X 1	

How to find a suitable analysis for the study

Martin Habedank 8_____8

HEPData		❸ About ۞ Submission Help ြ* File Formats +D Sign in					
	Q analysis:Rivet AND analysis:MadAnalysis	Search Reset search Advanced JSON					
1 Max results - I∓ Sort by - IÅ Reverse or	der Showing 2 of 2 results Query						
Date		к. к. <mark>1</mark> . р. ж.					
	Image: Provide the second state of	nultijet events with missing transverse momentum in proton-proton collisions at 13 TeV					
2016 2017	Phys.Rev.D 96 (2017) 032003, 2017.						
Collaboration	🖹 Inspire Record 1594909 % DOI 10.17182/hepdata.79412						
ATLAS 1 CMS 1	A search for supersymmetry is presented based on multijet events with large missing transverse momentum pro with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions	A search for supersymmetry is presented based on multijet events with large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of sqrt(s) = 13 TeV. The data, corresponding to an integrated luminosity of 35.9 inverse femtobarns, were collected with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions defined in terms of the number of jets, the number of jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse					
Subject_areas	analysis used in the following						
hep-ex 2	🗷 Rivet Analysis 🕼 MadAnalysis 🕼 SModels Search for squarks and gluinos	; in final states with jets and missing transverse momentum at $\sqrt{s}=$ 13 TeV with the ATLAS detector					
Phrases	The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.						
Supersymmetry 2	Eur.Phys.J.C 76 (2016) 392, 2016.						
Inclusive 1	🖹 Inspire Record 1458270 % DOI 10.17182/hepdata.74253						
Proton-Proton Scattering 1	A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no e	lectrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in \sqrt{s} = 13 TeV protonproton collisions at the Large Hadron Collider. No excess above					
badronic 1	the Standard Model background expectation was observed in 3.2 fb ⁻¹ of analyzed data. Results are interpreted	within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mas					
1	⊞ 0 data tables match query						
Next 5 Show 7	L						
Reactions		ж. с. 1 э. э.					
P P> GLUINO GLUINO X 1		—					

The studied case

Martin Habedank 9

Signal Region

Search for squarks and gluinos in final states with jets and missing transverse momentum at \sqrt{s} =13 TeV with the ATLAS detector

- →<u>Webpage:SUSY-2015-06</u>, *L*=3.2 fb⁻¹
- Selects events with $\circ E_{T}^{miss} > 200 \text{ GeV}$ $\circ \text{ No leptons}$
- Signal regions based (a.o.) on inclusive jet multiplicity
- Published results on detector level
- Provided cutflow

$\frac{\text{Selections}}{N_{\text{gen}}}$	gluino pair m(gluino,N1)=(1600, 0) GeV 10000	gluino pair m(gluino,N1)= $(1100, 700)$ GeV 30000	squark pair m(squark,N1)=(1000, 400) GeV 20000
Pre-selection, $E_{\rm T}^{\rm miss} > 200 \text{ GeV}, p_{\rm T}(\rm jet_1) > 200 \text{ GeV}$	V 9018	17314	16956
Jet multiplicity	9018	17298	16704
$\min(\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})) \mathrm{cut}$	5497	12359	13211
$p_{\mathrm{T}}(\mathrm{jet}_2)$ cut	5426	6399	9851
$E_{\rm T}^{\rm miss}/\sqrt{{ m H}_{\rm T}}$ cut	2919	2203	6361
$m_{eff}(incl.)$ cut	2913	1636	5761

Common approach of a physics analysis

Martin Habedank

¢Ĩ₽

detector & collider

10

simulation (B)SM model calculation of construction & detector observables kinematic cuts smearing model inclusive particle detector detector final state level signals parameters correction for reconstruction & detector effects kinematic cuts measurement search preserved analysis & compare data and prediction

detector

Technical setup

Martin Habedank 11

- Sample: →<u>Sherpa</u> v3.0.0 **W+jets**
- Tools:
 - →<u>MadAnalysis</u> v2.0.4_beta
 - Uses Delphes for estimation of detector effects
 - Achieved "particle level" representation by using smearing (SFS card) with perfect efficiencies if within detector acceptance
 - $\circ \rightarrow \underline{\text{Rivet}} v4.0.0$
 - Uses smearing for estimation of detector effects
- Correlations estimated with \rightarrow <u>TACO</u>
- All code available $\rightarrow \underline{here}$

Particle Level

Cutflow challenge - particle level, buggy

- On particle level, without overlap removal
- Some **disagreement of unclear origin** in first cuts

Martin Habedank

Cutflow challenge - particle level, buggy

• On particle level, without overlap removal

Cutflow challenge - particle level, buggy, ext.

• On particle level, without overlap removal, extended first cutflow cut

Martin Habedank

15

Diagreement (mostly) from jet multiplicity

Cutflow challenge - particle level, buggy, ext.

• On particle level, without overlap removal, extended first cutflow cut

Martin Habedank

Disagreement (mostly) from jet multiplicity

What is the problem?

Jet definition in Rivet implementation:

×: Was - include prompt muons (JetMuons::ALL)

✓: Should be - include only muons from decay (JetMuons::DECAY)

Why was this not detected before?

- Cutflow didn't include muon multiplicity (=0) cut
- Cutflow samples were for signal only (=0 leptons)

Selections	gluino pair m(gluino,N1)=(1600, 0) GeV	gluino pair m(gluino,N1)=(1100, 700) GeV	squark pair m(squark,N1)=(1000, 400) GeV
$N_{ m gen}$	10000	30000	20000
Pre-selection, $E_{T}^{\text{miss}} > 200 \text{ GeV}, p_{T}(\text{jet}_1) > 200 \text{ GeV}$	9018	17314	16956
Jet multiplicity	9018	17298	16704
$\min(\Delta \phi(E_{\rm T}^{\rm miss}, \rm jet))$ cut	5497	12359	13211
$p_{\mathrm{T}}(\mathrm{jet}_2)$ cut	5426	6399	9851
$E_{\rm T}^{\rm miss}/\sqrt{{\rm H}_{\rm T}}$ cut	2919	2203	6361
m _{eff} (incl.) cut	2913	1636	5761

Cutflow challenge - particle level, buggy, ext.

On particle level, without overlap removal, extended first cutflow cut
 Itiplicity

ons::ALI

m deca

plicity

hly (=0

Wh

Jet o

×: W

✔:

Wh

Experiments should include all cuts in cutflows.

(→<u>not a new insight</u>)

Experiments should provide cutflows for multiple *different* MC samples (e.g. incl. backgrounds).

Cutflow challenge - particle level, fixed, ext.

- On particle level, without overlap removal, extended first cutflow cut
- Fixed jet definition in Rivet → **Perfect agreement**!

Martin Habedank

Cutflow challenge - particle level, fixed, ext.

Martin Habedank 19

• On particle level, without overlap removal, extended first cutflow cut

- On particle level, without overlap removal, extended first cutflow cut
- Correlation:

* no events passed event selection

Martin Habedank

- On particle level, without overlap removal, extended first cutflow cut
- Correlation:

* no events passed event selection

Martin Habedank

- Martin Habedank 22
- On particle level, without overlap removal, extended first cutflow cut
- Self-correlation looks healthy but sparse

^{*} no events passed event selection

- Martin Habedank 23
- On particle level, without overlap removal, extended first cutflow cut
- Selected events are perfectly correlated between MadAnalysis and Rivet

* no events passed event selection

- Martin Habedank 24

- On particle level, without overlap removal, extended first cutflow cut
- Selected ever

* no events passed event selection

Detector Level

Cutflow challenge - detector level, fixed, ext.

- On **detector level**, with overlap removal, fixed jet definition
- More events passing due to lepton efficiency
- Considerable disagreement of unclear origin

Martin Habedank

Cutflow challenge - detector level, fixed, ext.

Martin Habedank 27 Í.

- On **detector level**, with overlap removal, fixed jet definition
- Testing different^{*} Delphes cards → would **explain disagreement**

* all delphes cards used by MadAnalysis that are more recent than the card used nominally for the analysis

Common approach of a physics analysis

Martin Habedank

Common approach of a physics analysis

detector & collider

(B)SM model

calculation o observables

input

level of representation

model

parameters

steps for theory or experiment

needed from experiment

nts need to provide eith

detector simulation

Experiments need to provide either
a) Results on particle level or
b) Results on detector level + method to obtain det. level from part. level*
for meaningful interpretation.

onstruction & signals

 $(\rightarrow \underline{not \ a \ new \ insight})$

* it doesn't really matter whether smearing functions, delphes cards, efficiency maps, folding matrices, ... as long as there is *something*

- On detector level, with overlap removal, fixed jet definition
- Correlation:

* no events passed event selection

Martin Habedank

- On detector level, with overlap removal, fixed jet definition
- Self-correlation looks healthy

31

Martin Habedank

- On detector level, with overlap removal, fixed jet definition
- Selected events have small, non-zero correlation between MA/ Rivet

Martin Habedank 32

- On detector le
- Selected event

таке аwач #56

Treating regions as uncorrelated across different tools based on a correlation can work!

But: Need caution at detector level. Correlation thresholds across tools on detector level should at least be < 0.04. n MA/ Rivet

Summary

Key take-aways:

- 1. Experiments should
 - a. avoid grouping different cuts in cutflow tables into one step.
 - b. include all cuts in cutflows.
 - c. provide cutflows for **multiple** *different* **MC** samples.
 - d. provide either
 - i. Results on particle level or
 - ii. Results on detector level + method to obtain det. level from part. level.
- 2. MadAnalysis and Rivet give
 - a. exactly the same results on particle level.
 - b. very different results on detector level.
- 3. Treating events **across tools as correlated**:
 - a. Can work!
 - b. Needs caution at detector level, corr. thresholds should not exceed 0.04.

Martin Habedank 35

Detailed event selection for SUSY-2015-06

lartin	Habedank	
	37	

<u>_</u> =	7-
	1
	1
16	Z,
<u> </u>	

Requirement	Signal Region						
rtequirement	2jl	2jm	2jt	4jt	5j	6jm	6jt
$E_{\rm T}^{\rm miss}$ [GeV] >	200						
$p_{\rm T}(j_1) \; [{ m GeV}] >$	200	300	200				
$p_{\rm T}(j_2) \; [{ m GeV}] >$	200	50	200 100				
$p_{\rm T}(j_3) \; [{ m GeV}] >$	- 100						
$p_{\rm T}(j_4) \; [{ m GeV}] >$	- 100						
$p_{\rm T}(j_5) \; [{ m GeV}] >$	-	-	37			50	
$p_{\rm T}(j_6) \; [{ m GeV}] >$				50			0
$\Delta \phi(\mathrm{jet}_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.8	0.4	0.8		0	.4	
$\Delta \phi(\mathrm{jet}_{i>3}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$		_	nc.	0.2			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$	15 20 -			_			
Aplanarity $>$		-		0.04			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	-			0.2	0.	25	0.2
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	1200	1600	2000	2200	1600	1600	2000

The studied case: theoretical setup

Martin Habedank 38

W+jets sample

- 100k (cutflows) or 950k (correlation) events
- Enhanced for high transverse momentum
- Run card:

BEAMS: 2212 BEAM ENERGIES: 6500 MI HANDLER: None **FRAGMENTATION:** None PROCESSES: - 93 93 -> 90 91 93{1}: **CKKW: 20** 2->2: Enhance_Function: VAR{(PPerp2(p[2])/10000)*(PPerp2(p[3])/10000)} 2->3: Enhance Function: VAR{(PPerp2(p[2])/10000)*(PPerp2(p[3])/10000)*(PPerp2(p[4])/10000)} HARD DECAYS: Enabled: true Decay Tau: true SELECTORS: - [PTmis, 200, E_CMS] EVENT OUTPUT: - HepMC3[events.hepmc] HEPMC3 IO TYPE: 2

Particle level

	2jl	2jm	2jt	4jt	5j	6jm	6jt
MadAnalysis	15	20	1	0	0	0	0
Rivet	15	20	1	0	0	0	0

Detector level

	2jl	2jm	2jt	4jt	5j	6jm	6jt	
MadAnalysis	9352	17363	5154	427	373	144	151	
Rivet	6165	12863	3171	229	170	56	70	

each of 950k events