

Andreas Crivellin

University of Zurich

New Higgses at the Electroweak Scale and the Multi-Lepton Anomalies

CERN, reinterpretation forum, 28.02.2025

Why new Higgses

- No theoretical principle forbids new Higgses
- Nearly all top-down approached have new scalars

Higgs sector very promising place to expect NP

95 GeV Combination

- LEP used to reduce the LLE
- No ATLAS signal in $\tau\tau$; reduced significance

3.4 global significance

Hints for a 152 GeV scalar

JHEP 07 (2023) 176 ATLAS-CONF-2024-005

160

160

• Hints for a resonance decaying to photons in association with leptons missing energy and b-jets

Dominant channels are $\gamma\gamma+X$

Hints for a 152 GeV scalar

10 г

Data-Bkg

110

120

• Hints for a resonance decaying to photons in association with leptons missing energy and b-jets

Dominant channels are $\gamma\gamma+X$

130

 $m_{\gamma\gamma}$ [GeV]

150

Drell-Yan Production

- One leptons, but not two leptons
- One tau but not two taus
- Ib but not t_{lep}

New Scalar with non-trivial SU(2) representation

Is the 152 GeV Higgs a Triplet (Δ)?

- Δ^0 decays dominantly to WW
- Positive shift in the W mass as preferred by the EW fit

p

w

X

Combination

≈4σ excess at 152GeV

Two-Higgs Doublet Model type-I

• $\operatorname{Br}(H^{\pm} \to WZ) = 0$ (at tree-level)

Above 4σ , large Br needed

Large Br($H_{152} \rightarrow \gamma \gamma$) via Z₂ breaking in 2HDMs

Consistent with vacuum stability, perturbativity

Multi-lepton anomalies

Differential Top-Quark Distributions

• $\Delta \phi^{e\mu}$ angle between the leptons from the W decays

New Physics pollution of this SM measurement?

Differential Top-Quark Distributions

New Physics pollution of this SM measurement?

New Physics in Top-Quark Distributions

- ATLAS analysis normalized to the total cross section
- only sensitive to the shape of NP
- NP at small angels can explain deficit at large angles
- Associated production of new scalars decaying to WW and bb has a top-like signature

Related to the 95 GeV and 151.5 GeV hints?

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

 Fix m_s=151.5GeV and m_{s'}=95GeV by the hints for narrow resonances. Weak m_μ (270GeV) dependence.

Deficit at large $\Delta \phi^{e\mu} \& m^{e\mu}$ explained as well

Simplified Model: $H \rightarrow SS' \rightarrow WWbb$ 2308.07953

Monte Carlo	$\chi^2_{ m SM}$	$\chi^2_{ m NP}$	$\sigma_{ m NP}$	Sig.	$m_S[\text{GeV}]$
Powheg+Pyhtia8	213	102	9pb	10.5σ	143 - 156
aMC@NLO+Herwig7.1.3	102	68	$5\mathrm{pb}$	5.8σ	
aMC@NLO+Pythia8	291	163	$10 \mathrm{pb}$	11.3σ	148 - 157
Powheg+Herwig7.1.3	261	126	$10 \mathrm{pb}$	11.6σ	149 - 156
Powheg+Pythia8 (rew)	69	35	$5\mathrm{pb}$	5.8σ	
Powheg+Herwig7.0.4	294	126	$12 \mathrm{pb}$	13.0σ	149 - 156
Average	182	88	9pb	9.6σ	143 - 157

Improvement of SM prediction imperative!

Agreement with data significantly improved (>5 σ)

Is 95 GeV a singlet? Relation to 151.5 GeV?

 S'(95): Singlet ³⁰ decays dominantly to bb
 S(152): decays 10

S(152):
 decays
 dominantly
 to WW

 m_S [GeV]

Consistent with 95 GeV γγ signal strength & a mass of S with 151.5 GeV

Δ 2HDMS and top-quark production

Field	$SU(2)_L$	$U(1)_Y$
ϕ_s	1	0
ϕ_2	2	1/2
ϕ_1	2	1/2
Δ	3	0

Explains:

- Top-quark differential distributions
- Di-photon excesses
- Resonant top-quark production Elevated 4-top cross section

G. Coloretti, A.C. and B. Mellado, 2312.17314

Combined explanation possible

Generic Georgi-Machacek Model

SM extend

- SM extended by a Y=0 and a Y=1 triplet
- Vevs of the triplet can be sizable due to cancellation in the W mass -> sizable vector-boson fusion

Excesses in same-sign WW and ZW

Generic Georgi-Machacek Model

Can explain WW, ZW and yy

Conclusions

- Hints for narrow resonances at 95 GeV & 152 GeV
- Significant tensions in top quark differential distributions (>5σ)
- Can be explained by EW scale Higgses
- Model independent searches are useful
- Provide as large sidebands as possible
- Minimum: Give cut-based results
- Best case: Provide PDT

Most significant hints for new particles at the LHC

Hints for new Scalars at 152 GeV

• Combination within the simplified model $H \rightarrow SS^*$ with $S \rightarrow WW$, MET, $\gamma\gamma$

Outlook

 Intriguing anomalies emerged in the last years which point towards new particles

The Standard Model is crumbling

Simplifed Model Analysis

S. Banik, AC, 2407.06267

Triplet or Doublet?

$h \rightarrow \gamma \gamma + X \text{ from ATLAS}$

S. Ashanujjaman, S. Banik, G. Coloretti, A.C. S. P. Maharathy,

B. Mellado, 2404.14492

Triplet consistently explains $h \rightarrow \gamma \gamma + X$ excesses

$h \rightarrow \gamma \gamma + X$ Channels

S. Ashanujjaman, S. Banik, G. Coloretti, A.C. S. P. Maharathy, B. Mellado, 2404.14492

Triplet consistently explains $h \rightarrow \gamma \gamma + X$ excesses

Low mass WW resonances searches

ATLAS and CMS combination

New physics effect preferred over the whole range

Related to 95GeV and 151GeV?