CMS Public Statistical Models G. Ortona for the CMS Collaboration

(12.51)

G.4 USISUTIAR

Dall-e impression of a statistical model in particle physics

Why do we want to publish Statistical models

"The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse" SciPost Phys. 12, 037 (2022), arXiv:2109.04981

Statistical models provide an excellent resource for the community. The discussion about publishing them started in the early 2000s. Picked momentum in the ATLAS and CMS collaborations with LHC-Run2 results, also thanks to data-sharing options such as HEPData.

Publishing them will help maximize the scientific impact of the analysis, and facilitate • Preservation and documentation: the mathematical construction of the analysis in full detail. • Reinterpretation and reuse (within and outside the collaborations)

- Combination of multiple analyses
- Combination of analyses across experiments
- Education on statistical procedures
- recent developments.

• Tool development: Statistical software updates can use real world examples to test and debug their

The interpretation spectrum

Exclusion contours in full models

- Highest level of interpretation included
- Easy to communicate
- Immediately relevant for specific models

experimental results

POIs

intervals

- knowledge
- Can be used to recast results tools)

Stolen from Courtesy of N. Wardle from an idea of P. Owen @ Reinterp2021

A CMS likelihood

The experimental likelihood function is the most complete picture we have of all the parameters entering a measurement and their relations.

- Takes into account the data, the POIs, global and auxiliary observables, nuisance parameters...
- Highly factorized

Supported models

 $L(\vec{\mu};\vec{\nu}) = \prod p(x_n;\sum \mu_i S_{i,n}(\vec{\nu}) + \sum B_k(\vec{\nu})) \cdot \prod p(y_i;\nu_i) = \sum_{30} \frac{1}{2} \sum_{3$

Statistical models can be both parametric (unbinned), binned, or simple counting analyses.

Different statistical models can be combined in the same likelihood function

Combine

Combine is the most used statistical analysis software in CMS

built around ROOT, RooFit and RooStats:

- Encapsulate the statistical model in a human-readable configuration file, called the *datacard*.
- Builds pre-defined statistical models: counting, parametric unbinned and binned, template-based
- Statistical models are flexible and can be custom-designed, allowing a wide range of relations between POIs and input PDFs
- Command-line interface to RooFit/RooStats methods.
- Powerful for combinations, scales well with model complexity
- Provides workflow for statistical procedures recommended by the CMS Statistics Committee
- Provides an extensive toolset for validation
- Supported with extensive documentation and tutorials: <u>https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/latest/</u>
- Available as docker container for cross-platform usage

Described in Comput.Softw.Big Sci. 8 (2024) 1, 19

2021-2022

The datacard

Combine specifies the construction of the model through **datacards**

The datacards describes the content of the plots we publish in our papers, including informations on yields and systematic uncertainties

1	imax 1					
2	jmax 1					
3	kmax 2					
4	#					
5	shapes data_ob \hookrightarrow data_obs	os binl pa	rametric-analysis-dataca	rd-input.root	: w:	
6	shapes signal	bin1 pa:	rametric-analysis-dataca	rd-input.root	w:sig	
7	shapes backgro	und bin1 pa	rametric-analysis-dataca	rd-input.root	w:bkg	
8	#		-	•	-	
9	bin	bin1		Object name	Type	
10	observation	567			-77*	
11	#			m	RooRealVar	
12	bin	bin1	bin1			
13	process	signal	background	data_obs	RooDataSet	
14	process	0	1			
15	rate	10	1	sig	RooGaussian	
16	#					
17	lumi 1	.nN 1.1		1 1		-
18	sigma p	aram 1.0	0.1	ркд	RooExponentia	Τ
19	alpha f	latParam				
20	bkg_norm f	latParam		MH	RooRealVar	
				sigma	RooRealVar	
				alpha	RooRealVar	
	ma Ortana			bkg_norm	RooRealVar	

The invariant mass observable.

Invariant mass of each event in the observed data.

Normal pdf describing the probability distribution of the invariant mass for the signal process.

Exponential pdf describing the probability distribution of the invariant mass for the background process.

Mean of the signal pdf.

Standard deviation of the signal pdf.

Slope parameter for the background pdf.

Rate multiplier for the total background contribution.

Where to find the CMS statistical models

- CMS will publish its statistical models on CDS un CC4.0 licence: https://repository.cern/communities/cms-statistica records?q=&l=list&p=1&s=10&sort=newest
- HEPData publication entries will also link to the state model whenever a model is available

What you will find in the statistical model webpage

- An introduction to the results
- Which combine software version was used
- The commands used to produce the results
- The datacards with the human-readable description
- A table with the systematic uncertainties and their
- Any auxiliary material needed to reproduce a rest

Combine Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at \sqrt{s} = 13 TeV SModelS **P** Version 3

The CMS collaboration Tumasyan, Armen; Adam, Wolfgang; Andrejkovic, Janik Walter; et al.

JHEP 05 (2022) 014, 2022.

Inspire Record 2009652 % DOI 10.17182/hepdata.114414

	CDS	Search records	Q	Communities	My dashboard
nder a	Combine	CMS statistical models			
al-models/	Q Records	🏜 Members			
statistical				3 results found	
	Versions			January 21, 2025 (v	1) Model 🔓 Open
_	View a	all versions		Statistical mo CMS Collaboratio	odels for CMS-SUS-20
•	Access status	;		Introduction This r	resource contains the full statis
	Open	3		Part of CMS statistic Uploaded on January	al models 28, 2025
	File type				
	GZ	3		August 23, 2024 (v1) Model 🕒 Open
ion of the input	S Resource type	26		CMS Collaboratio	n
ir descriptions.	Model 3			Introduction This r 13.6 TeV by the C Part of CMS statistics	resource contains the full statis MS collaboration. The statistic al models
UIL	Help			Oploaded on August 2	8, 2024
	Search guide			April <u>15, 2024 (v1.0</u>)	Model C Open
		_			

CMS Higgs boson observation statistical model **CMS** Collaboration

(Re)interpreting: how to use the models

Combine allows for "easy" re-interpretation of previous results, such as:

- Changing/freezing POIs within the model parameter For example promoting the Higgs mass to be a PC (-freezeParameters, -redefineSignalPOIs)
- Changing the behaviour of some nuisances -freezeParameters
- Adding multiplicative factor to process yields (rateF
- General case: you can rebuild the likelihood using different Physics Model. Either already present in Combine or a custom made one

text2workspace.py -P HiggsAnalysis.CombinedLimit.HiggsCouplings_ICHEP12:cVcF 125.5/comb.txt -m 125.5 -o comb_kVkF.root combine comb_kVkF.root -m 125.5 -M MultiDimFit --algo singles

IU

	576 🗸	<pre>def getHiggsSignalYieldScale(self, production, decay, energy):</pre>
ius i	577	name = "c7_XSBRscal_%s_%s" % (production, decay, energy)
	578	<pre>if self.modelBuilder.out.function(name) == None:</pre>
	579	<pre>if production in ["ggH", "qqH", "ggZH", "tHq", "tHW"]:</pre>
	580	<pre>XSscal = ("@0", "Scaling_%s_%s" % (production, energy))</pre>
	581	<pre>elif production == "WH":</pre>
ers	582	XSscal = ("@0*@0", self.kappa_W)
	583	<pre>elif production == "ZH":</pre>
ור	584	XSscal = ("@0*@0", self.kappa_Z)
ノ.	585	<pre>elif production == "ttH":</pre>
	586	XSscal = ("@0*@0", "kappa_t")
	587	<pre>elif production == "bbH":</pre>
	588	XSscal = ("@0*@0", "kappa_b")
	589	else:
	590	<pre>raise RuntimeError("Production %s not supported" % production)</pre>
	591	BRscal = decay
	592	<pre>if not self.modelBuilder.out.function("c7_BRscal_" + BRscal):</pre>
	593	<pre>raise RuntimeError("Decay mode %s not supported" % decay)</pre>
	594	<pre>if decay == "hss":</pre>
	595	BRscal = "hbb"
	596	<pre>if production == "ggH" and (decay in self.add_bbH) and energy in ["7TeV", "8TeV", "13TeV", "14TeV"]:</pre>
/	597	b2g = "CMS_R_bbH_ggH_%s_%s[%g]" % (decay, energy, 0.01)
	598	b2gs = "CMS_bbH_scaler_%s" % energy
	599	self.modelBuilder.factory_(
	600	'expr::%s("(%s + @1*@1*@2*@3)*@4", %s, kappa_b, %s, %s, c7_BRscal_%s)' % (name, XSscal[0], XSscal[1]
а	601)
A	602	else:
	603	self.modelBuilder.factory_('expr::%s("%s*@1", %s, c7_BRscal_%s)' % (name, XSscal[0], XSscal[1], BRscal))
	604	<pre>print("[LHC-HCG Kappas]", name, production, decay, energy, ": ", end=" ")</pre>
	605	<pre>self.modelBuilder.out.function(name).Print("")</pre>
	606	return name
	607	

--- MultiDimFit ---best fit parameter values and profile-likelihood uncertainties: -0.120/+0.113 (68%) CV : +0.946 CF: +0.497 -0.170/+0.203 (68%) Done in 3.09 min (cpu), 3.09 min (real)

b2g, b2gs, BRscal

combination of different results

The description of nuisance parameters is also m to help in combinations

It is possible to combine any 2 analyses, as long as they are sensitive to the same POIs

Caveats:

- Analyses phase spaces should be mutually exclusive to avoid double-counting
- No partial correlation of nuisances. Nuisance parameters are either fully correlated (same name) or uncorrelated (different names)

	class	description
CMS_eff_b	btag	efficiency uncertainty for standard b jets for all years.
vhbb_statZjLF_Wenu2_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
_vhbb_statZjLF_Wenu_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
IS_vhbb_statZjLF_Wmunu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
S_vhbb_statZjLF_Wmunu2	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statZjLF_Wmunu2_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statZjLF_Wmunu_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
bb_statZjLF_ZnunuHighPt_8TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
bb_statZjLF_ZnunuLowPt_8TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
/hbb_statZjLF_Znunu_1_7TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
/hbb_statZjLF_Znunu_2_7TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
/IS_vhbb_statZjLF_Wenu2	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
MS_vhbb_statsTop_Wenu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statsTop_Wenu2_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
_vhbb_statsTop_Wenu_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
S_vhbb_statsTop_Wmunu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
S_vhbb_statsTop_Wmunu2	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_statsTop_Wmunu2_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statsTop_Wmunu_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_stats_TT_ZeeHighPt_8TeV	custom	uncertainties due to the limited MC simulation size in 2 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_stats_TT_ZeeLoose_7TeV	custom	uncertainties due to the limited MC simulation size in 2 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_stats_TT_ZeeLowPt_8TeV	custom	uncertainties due to the limited MC simulation size in 2 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_stats_TT_ZeeTight_7TeV	custom	uncertainties due to the limited MC simulation size in 2 lepton VH(bb) channel, implemented as a shape uncertainty
IS_vhbb_statsTop_Wenu2	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
bb_stats_TT_ZmmHighPt_8TeV	custom	uncertainties due to the limited MC simulation size in 2 lepton VH(bb) channel, implemented as a shape uncertainty
MS_vhbb_statZjLF_Wenu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statZjHF_Znunu_1_7TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
hbb_statWjHF_Znunu_2_7TeV	custom	uncertainties due to the limited MC simulation size in 0 lepton VH(bb) channel, implemented as a shape uncertainty
MS_vhbb_statWjLF_Wenu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
vhbb_statWjLF_Wenu2_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
_vhbb_statWjLF_Wenu_8TeV	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
S_vhbb_statWjLF_Wmunu	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
S_vhbb_statWjLF_Wmunu2	custom	uncertainties due to the limited MC simulation size in 1 lepton VH(bb) channel, implemented as a shape uncertainty
	austam	uncertainties due to the limited MC simulation size in 1 lepton V/L//bb) shannel implemented on a shane uncertainty

CMS

CMS

Compatibility with other frameworks

Combine is fully based on ROOT/RooFit/RooStats. Should be able to interact with other RooStats-based frameworks

Combine performances are powerful, especially for complex models. CMS Higgs combination in 2022 (Nature 607 (2022) 60-68) had 900 categories, STXS1.2 POI +EFT, 8000+ NP in total. 16GB+ to build the likelihood model, 10GB+ to perform the fit, Runs in 24-48 hours!

Giacomo Ortona

Already available: Combine<->pyHF conversion tool (combine2pyhf and pyhf2combine). Developed and extensively validated in the context of the ATLAS+CMS tttt EFT combination

Plan to apply HS3 standards in the next versions of combine. Not straightforward due to some custom classes in Combine, but they could be ported into ROOT.

When will you find the models: CMS plans

At the moment, only a handful of statistical model are available on CDS

CMS official strategy is that by default all analyses will publish their statistical model

is implemented, and different physics group will be ready on different timescales.

are possible

statistical model published quickly

- We are in the transition/ramp-up period. There is some inertia from when a strategy is decided to when
- We do not plan to release models for older, already published, analyses. Although motivated exceptions
- We are implementing tools to make the whole procedure as automated, standardised and easy as possible, taking as much advantage as possible from CI systems. Hopefully this will help in having

CMS released the first statistical models implemented in Combine and is in process of releasing more statistical models.

- Developed a standard pipeline to increase publication efficiency
- Standardised naming of systematic uncertainty to facilitate publication
- For models with several BSM signals, only a subset of signal hypotheses will be published with instructions on how to interpolate over the model phase space

Combine tool is public: <u>documentation</u> + standalone container

- Self-documenting statistical model building
- Extensive toolset for statistical inference
- Constantly improving documentation, ensuring compatibility with the latest ROOT versions

Working towards compatibility with other formats:

- Combine <—> pyHF conversion already available and validated.
- Work started to implement HS3 (HEP Statistics Serialization Standard).

