A High-Dimensional and Unbinned SM Measurement with the ATLAS Detector

Mariel Pettee, Ben Nachman, & Dag Gillberg February 26th, 2025

"Unfolding" means removing unwanted detector effects from our experimental data.

This has the advantage of correcting a whole dataset on a statistical level, making the data more flexible & useful for future analyses.

In contemporary data analysis for fundamental physics, we want more from our unfolding strategies.

Traditional unfolding approaches (binned & few-dimensional) have significant room for improvement.

Specifically:

- Any future user of unfolded data would ideally want to **choose their own bins** for their measurement, but this is not possible with binned strategies in which bins are pre-determined.
- A future user of unfolded data might want to **modify the phase space**, but this is basically not possible with binned measurements.
- Measurements of **properties that are a function of many observables** are not possible with a few-dimensional unfolding.

Our recent result using the full ATLAS Run 2 dataset

A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

The ATLAS Collaboration

The 24 observables describe Z+jets kinematics & properties of jet substructure.

(Ultimately, our goal is to enable high-dimensional precision QCD studies.)

- Leading & sub-leading jet: p_T , y, ϕ , T_1 , T_2 , T_3 , m, $n_{charged tracks}$
- Leading & sub-leading muon: p_{T} , η , ϕ
- \circ Di-muon system: p_T, y

	pT_ll	pT_l1	pT_l2	eta_l1	••••	weights_trackPtScale	weights_theoryPSjet	weights_theoryPSsoft
0	479.442780	288.466919	198.183929	-0.117443		0.003174	0.002844	0.003195
1	274.524994	166.120789	125.378044	0.313321		0.008168	0.008563	0.008236
2	462.713226	335.697479	133.157684	0.766387		0.001638	0.001724	0.001890
3	215.157608	189.518021	25.711994	1.083798		0.004669	0.004622	0.004648
4	222.458313	128.850159	108.589226	-0.635713		0.002102	0.002417	0.002129
					••••			
418009	934.971924	738.464722	196.525192	0.102944		0.000069	0.000070	0.000061
418010	245.813461	166.847061	93.757919	1.308837		0.000193	0.000189	0.000203
418011	478.670349	378.737518	108.016479	-0.328871		0.001969	0.001813	0.001825
418012	278.586029	249.255356	43.581135	0.632484		0.003238	0.003101	0.003090
418013	244.505249	219.796280	40.357105	1.833223		0.000947	0.000968	0.000957

The measurement is a 24-dimensional object. Here is one of the unbinned differential cross-sections:

Dilepton p_T

But we can go beyond just measuring the 24 input variables... we can also imagine brand new observables that we want to measure, and even probe different bins or regions of phase space. Let's construct some new observables...

$$\tau_{21} = \tau_2/\tau_1$$

This ratio of two parameters measuring jet substructure is useful for e.g. W vs. QCD jet classification:

Adapted from "N-jettiness" [Stewart, Tackmann, Waalewijn: 1004.2489]

Let's construct some new observables...

12

Datasets & Jupyter notebooks

Our measurements are published here on Zenodo: <u>https://zenodo.org/records/11507450</u>

Communities My dashboard							
The ATLAS Experiment at CERN							
Published June 6, 2024 Version v1	Edit Edit						
ATLAS OmniFold 24-Dimensional Z+jets Open Data	New version Share						
ATLAS Collaboration 🦀	64 36						
These datasets contain the unbinned, twenty-four-dimensional ATLAS Z+jets differential cross-section measurement presented in CERN-EP-2024-132. The measurements are presented as Pandas DataFrames in HDF5 format, and they are accompanied by MC predictions formatted as Numpy arrays. Measurements are provided both for "pseudo-data", i.e. a validation MC sample with truth- and reco-level quantities that has been reweighted to match data, as well as real data.	VIEWS DOWNLOADS Show more details						
Important: Before using this data, please consult the documentation & example notebooks.							
The signal process is inclusive Z→µµ production with a fiducial region defined in the boosted regime: p_T^µµ > 200 GeV.	Versions						
In total, 24 Z+jets kinematic observables are measured:	Version v1 Jun 6, 2024 10.5281/zenodo.11507450						
 p_1, η, and φ or each or the two moons to observables) The p_T and rapidity of the dimuon system: p_T^µµ, y^µµ (2 observables) The 4-momenta (p_T, y, φ, m) of the two leading charged particle jets (8 observables) The number of (charged) constituents and n-subjettiness quantities τ_1, τ_2, and τ_3 for each of the same two jets (8 observables) 	Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.11507449. This DOI represents all versions, and will always resolve to the latest one. Read more.						
labeled by 1 and 2 for leading and subleading in p_T, respectively.							

We have also published a detailed README & several Jupyter notebooks with instructions about how to use the public datasets:

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024

A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector

CDS CERN-EP-2024-132 arXiv 2405.20041 DOI 10.5281/zenodo.11507450

These notebooks demonstrate how to interact with the unbinned, twenty-four-dimensional ATLAS Z+jets differential cross-section measurement presented in arXiv:2405.20041. This analysis uses OmniFold to mitigate detector effects in data.

Since the data is structured as an unbinned set of events, users can:

- Re-create the differential cross-section distributions (and calculate the associated uncertainties) of the twenty-four measured input observables with a flexible choice of binnings (see Fig. 1 below)
- Modify the measured phase space on-the-fly (see Fig. 2a & 2b below)
- Measure new observables or quantities constructed as a function of the input observables (see Fig. 2 below)

Look at closure of pseudo-data with the known targets:

axs[1].errorbar(bin_centers, np.ones(len(bin_centers)), xerr=bin_widths/2, yerr=uncertainties[var+"_total"]/100, marker=".", linestyle="None", col

_ = make_error_boxes(axs[1], bin_centers, start_density/target_density, np.vstack([bin_widths/2,bin_widths/2]), np.vstack([(start_density/target_de

_ = make_error_boxes(axs[1], bin_centers, multifold_density/target_density, np.vstack([bin_widths/2,bin_widths/2]), np.vstack([(multifold_density/t

Calculate p-values:

chi_2 = D.dot(np.linalg.inv(v_total_decorr)).dot(D.T)
p_value = 1 - stats.chi2.cdf(chi_2, dof)

print(f"{var:<20} dof: {dof:<7} x2: {chi_2:.5f} \t p value: {p_value:.4f}")</pre>

0ut	[14]:								
		pT_l1	dof:	6	x2:	11.01103	р	value:	0.0880
		pT_l2	dof:	6	x2:	10.68616	р	value:	0.0986
		eta_l1	dof:	14	x2:	18.19845	р	value:	0.1979
		eta_l2	dof:	14	x2:	12.03006	р	value:	0.6039
		phi_l1	dof:	16	x2:	19.79036	р	value:	0.2298
		phi_l2	dof:	16	x2:	13.41401	р	value:	0.6423
		pT_trackj1	dof:	6	x2:	13.37187	р	value:	0.0375
		pT_trackj2	dof:	4	x2:	1.73601	р	value:	0.7842
		y_trackj1	dof:	18	x2:	10.40634	р	value:	0.9178
		y_trackj2	dof:	10	x2:	3.60559	р	value:	0.9634
		phi_trackj1	dof:	16	x2:	4.05499	р	value:	0.9988
		phi_trackj2	dof:	16	x2:	6.52962	р	value:	0.9813
		pT_ll	dof:	5	x2:	4.97659	р	value:	0.4187
		y_ll	dof:	14	x2:	19.70013	р	value:	0.1399
		Ntracks_trackj1	dof:	6	x2:	6.83001	р	value:	0.3369
		Ntracks_trackj2	dof:	5	x2:	2.67966	р	value:	0.7492
		m_trackj1	dof:	6	x2:	9.24668	р	value:	0.1602
		m_trackj2	dof:	4	x2:	6.91095	р	value:	0.1407
		tau1_trackj1	dof:	7	x2:	1.94921	р	value:	0.9626
		tau1_trackj2	dof:	5	x2:	3.92012	р	value:	0.5610
		tau2_trackj1	dof:	7	x2:	8.74004	р	value:	0.2719
		tau2_trackj2	dof:	5	x2:	5.93484	р	value:	0.3126
		tau3_trackj1	dof:	4	x2:	2.63007	р	value:	0.6215
		tau3_trackj2	dof:	4	x2:	5.48124	р	value:	0.2414

Construct derived variables:

Plot uncertainty correlation matrices:

Machine learning methodology: OmniFold

Q: How can we adjust one distribution to look like another?

Q: How can we adjust one distribution to look like another? A: Learn a reweighting function based on the ratio of their probability densities.

Q: How can we adjust one distribution to look like another? A: Learn a reweighting function based on the ratio of their probability densities.

In practice, calculating individual densities $p_{\rm A}({\rm x})$ and $p_{\rm B}({\rm x})$ can be hard.

But neural network classifiers can be used to directly approximate the ratio of the likelihoods.

OmniFold overview

The OmniFold procedure requires two datasets* as inputs:

(*In practice, we use samples from different MC generators as well as systematically-shifted samples to determine uncertainties.)

- MC sample with events at both detector-level and particle-level
- Real data
 - (In fact, it's the only unfolding method of this kind that has been applied to real data)

In a multi-stage and iterative process, a series of neural networks are trained to learn a reweighting function that maps particle-level MC distributions to particle-level data distributions.

Note: Binned OmniFold reduces to Iterative Bayesian Unfolding (IBU)!

Each iteration consists of 2 reweighting stages.

1. Reweight MC Reco to match Data Reco

2: Reweight MC Truth to match the reweighted MC Reco from Step 1

 \rightarrow Ensures that if two identical particle-level events will be given the same weight, even if they are reconstructed differently

 \rightarrow Can be thought of as an "averaging" step

$$p_{\text{unfolded}}^{(n)}(t) = \nu_n(t) \times p_{\text{Gen}}(t)$$

Each iteration consists of 2 reweighting stages.

- Iterate this process multiple times to find a function that can convert truth-level MC to unfolded data.
- Neural networks are well-suited to this job: can process variable-length, high-dimensional inputs, and can learn a reweighting function by training a classifier & reinterpreting its outputs:

$$\frac{f^*(\vec{x})}{1 - f^*(\vec{x})} \propto \frac{p(\vec{x}|\text{dataset 1})}{p(\vec{x}|\text{dataset 2})}$$

OmniFold reweights truth-level MC to estimate "truth-level" data.

After one iteration of our method, the truth-level MC is reweighted to look more like truth-level data.

OmniFold reweights truth-level MC to estimate "truth-level" data.

After five iterations of our method, the reweighted truth-level MC is closely aligned with truth-level data.

ML-enabled unfolding is allowing us to reimagine how we publish and re-use HEP data.

And it's not just the ATLAS Experiment...

https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf

CERNCOURIER.COM

FEATURE ARTIFICIAL INTELLIGENCE

HOW TO UNFOLD WITH AI

Inspired by high-dimensional data and the ideals of open science, highenergy physicists are using artificial intelligence to reimagine the statistical technique of 'unfolding'.

A Andreassen *et al.* 2020 *Phys. Rev. Lett.* **124** 182001. H1 Collab. 2023 *Phys. Lett. B* **844** 138101. LHCb Collab. 2023 *Phys. Rev. D* **108** L031103. CMS Collab. 2024 CMS-PAS-SMP-23-008. ATLAS Collab. 2024 *Phys. Rev. Lett.* **133** 261803.

Thanks!

- Pip-installable unfolding package:
 - pip install omnifold (<u>https://pypi.org/project/unbinned-unfold/</u>)
- CERN Courier feature article: <u>https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf</u>
- ATLAS result documentation
 - Paper:
 - arXiv: <u>arXiv:2405.20041</u> [hep-ex]
 - CDS: <u>CERN-EP-2024-132</u>
 - Codebase:
 - <u>https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</u>
 - Datasets:
 - https://zenodo.org/records/11507450

We apply a standard event selection for Z+jets, then restrict $p_{T}^{\mu\mu}$ > 200 GeV.

Dataset	2015+2016		201	17	2018		
$p_{\rm T}^{\mu\mu}$ cut [GeV]	> 165	> 200	> 165	> 200	> 165	> 200	
Data	89167	47544	103286	55132	138251	74197	
Strong Z (Sherpa 2.2.1)	79670	43295	95120	51520	125280	67430	
Strong Z (MG5 LO)	94430	51817	112450	61860	147310	81040	
EW Zjj (Powheg+Pythia8)	1207	786	1431	928	1932	1260	
$ZV \ (V \to jj)$	1438	890	1718	1059	2261	1404	
Other VV	511	308	606	367	811	497	
$t\bar{t}$, single top	263	88	306	106	393	141	
$W(\rightarrow \ell \nu), Z(\rightarrow \tau \tau)$	3	2	0	0	3	3	
Non-strong-Z	3422	2074	4061	2460	5400	3305	
Non-strong-Z / data	3.8%	4.4%	3.9%	4.5%	3.9%	4.4%	

The resulting dataset is 95% Drell-Yan, 3% diboson (ZV), and 2% EW Z+jets.

Table 10: Observed and expected event yields following the event selection described in section 5.1 except using dimuon triggers instead of single muon triggers.

Notable parts of the methodology

• NN ensembling:

- Neural network training introduces a small uncertainty in our result due to its stochastic nature.
- We combat this by ensembling, i.e. taking the median result from 100 independent neural networks.
 - The final result required training ~25,000 neural networks!

• Uncertainties:

- Experimental (muon efficiency & calibration, track reconstruction, pileup modelling, luminosity)
- Theoretical (PDF & a_s variations, QCD scales, generator tune)
- Statistical uncertainty (MC & data, estimated via bootstrapping)
- NN uncertainty
- Top & Non-Strong
- Unfolding (sensitivity to particle-level shape & sensitivity to modeling of features not included in unfolding)

Validating the method

- To validate the method, we first run the full analysis using a "pseudo-data" sample:
 - i.e. MC simulation that has been re-weighted to match data
 - This has the advantage of letting us compare to the truth-level target distribution
- We run a χ^2 compatibility test on the final results:
 - The resulting *p*-values are >0.05 for 23 of the variables, but 0.038 for pT_{i1}
 - Analogous tests using IBU (each variable measured one-at-a-time) produces similar results.
 - Further validation was done in dedicated kinematic sub-sections (high dimuon p_T, EW-enhanced, and diboson-enhanced), and similar results were observed.
- We also ran "stress tests" to test OmniFold under (dramatic) distortions, and no major biases were observed.
- Using these tests, we produced a set of recommendations, e.g. ensure that $N_{eff} > 5,000$ events per bin and statistical uncertainty is < 15% in each bin.

(Even for derived variables!)

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$L_{\text{BCE}}[f] = -\int \mathrm{d}x \left(p_A(x) \log(f(x)) + p_B(x) \log(1 - f(x)) \right)$$

where f(x) is the output of a NN classifier, and our datasets are sampled from these two probability distributions $p_A(x)$ and $p_B(x)$.

Classifier functions can be re-used to directly approximate a likelihood ratio.

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss:

$$L_{\rm BCE}[f] = -\int dx \left(p_A(x) \, \log(f(x)) + p_B(x) \, \log(1 - f(x)) \right)$$

To find where this is minimized, we need to find the extremum, i.e. differentiate with respect to f(x) and set equal to 0:

$$\frac{\partial L}{\partial f} = -\frac{\partial}{\partial f} \left(p_A(x) \log(f(x)) + p_B(x) \log(1 - f(x)) \right)$$
$$= -\frac{p_A(x)}{f(x)} + \frac{p_B(x)}{1 - f(x)}$$
$$\frac{\partial L}{\partial f} = 0 \Rightarrow \frac{f(x)}{1 - f(x)} = \frac{p_A(x)}{p_B(x)}$$

Rescaling of classifier output

Likelihood ratio

OmniFold reweights truth-level MC to estimate "truth-level" data.

Let's say we have two datasets: our MC simulation $\mathcal{N}(\mu=0, \sigma=1)$ and our data $\mathcal{N}(\mu=1, \sigma=1.5)$.

Due to detector effects, the distributions will look different at **truth-level** vs. at **reco-level**. (sharper peaks) (wider peaks)

OmniFold reweights truth-level MC to estimate "truth-level" data.

In reality, we'll never have access to the truth-level data - the best we get is the reco-level data.

Our goal, then, is to learn a way to transform our truth-level MC into truth-level data.

Classifier-based unfolding works well in practice and has several advantages.

In particular, it learns small corrections to MC, meaning it starts from a good baseline solution.

Maximum-likelihood classifier-based unfolding is also prior-independent.