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“Unfolding” means removing unwanted detector  
effects from our experimental data.  

 

 
This has the advantage of correcting a whole dataset on a statistical level, 

making the data more flexible & useful for future analyses.



In contemporary data analysis for fundamental physics,  
we want more from our unfolding strategies. 

Traditional unfolding approaches (binned & few-dimensional) have significant room for improvement.  
 
Specifically:  

● Any future user of unfolded data would ideally want to choose their own bins for their measurement, 
but this is not possible with binned strategies in which bins are pre-determined.  

● A future user of unfolded data might want to modify the phase space, but this is basically not possible 
with binned measurements.  

● Measurements of properties that are a function of many observables are not possible with a 
few-dimensional unfolding.  

3



Our recent result using the 
full ATLAS Run 2 dataset
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The 24 observables describe Z+jets kinematics & properties of jet substructure.  
 (Ultimately, our goal is to enable high-dimensional precision QCD studies.) 

○ Leading & sub-leading jet: pT, y, ɸ, τ1, τ2, τ3, m, ncharged tracks 
○ Leading & sub-leading muon: pT, η, ɸ 
○ Di-muon system: pT, y 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The measurement is a 24-dimensional object.  
Here is one of the unbinned differential cross-sections: 

 
Dilepton pT 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But we can go beyond just measuring the 24 input variables… 
 we can also imagine brand new observables that we want to measure,  

and even probe different bins or regions of phase space. 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Let’s construct some new observables… 

This ratio of two parameters measuring jet substructure 
is useful for e.g. W vs. QCD jet classification: 

Images from J. Thaler’s talk and paper from 2011 

https://www.google.com/url?q=https://web.mit.edu/panic11/talks/thursday/PARALLEL-4G/1-1330/thaler/965-0-jthaler_PANIC11_Nsub.pdf&sa=D&source=editors&ust=1740530602626970&usg=AOvVaw0k8wBG4Y1UeNcbeCDcYSj2
https://www.google.com/url?q=https://arxiv.org/pdf/1011.2268&sa=D&source=editors&ust=1740530602627083&usg=AOvVaw1IUq3RcyIS5Xf63_eNm9Kz
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Let’s construct some new observables…  IRC-safe phase space! 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Let’s construct some new observables… 

Average mj1 in bins of leading jet pT



Datasets & Jupyter notebooks
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Our measurements are published here on Zenodo: https://zenodo.org/records/11507450  

https://www.google.com/url?q=https://zenodo.org/records/11507450&sa=D&source=editors&ust=1740530605593352&usg=AOvVaw2zfIvsfhLntl6svnphqy6O
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We have also published a detailed README & several Jupyter notebooks  
with instructions about how to use the public datasets: 

https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024 

https://www.google.com/url?q=https://colab.research.google.com/drive/1L13XPeB6peLiWcO9CvAM7l8GfkbkPAxS&sa=D&source=editors&ust=1740530606099592&usg=AOvVaw37LA2T8BTc7u_9Un_Wb9Xx
https://www.google.com/url?q=https://colab.research.google.com/drive/1L0ifnkGhONl85_rAzVakfIMlBi2FitoM&sa=D&source=editors&ust=1740530606099807&usg=AOvVaw1M7MiInafIy_BoapURfXb0
https://www.google.com/url?q=https://colab.research.google.com/drive/1KzrjP8tvIRCVDieNngKiNa1yDwuGaU56&sa=D&source=editors&ust=1740530606099961&usg=AOvVaw3Bi7x5dz0w155tZ3w36EVC
https://www.google.com/url?q=https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024&sa=D&source=editors&ust=1740530606101342&usg=AOvVaw0oh-i1PeJwqKrWQlTnME3Q
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Look at closure of pseudo-data with the known targets:  Calculate p-values: 



18

Reproduce the unfolding result and calculate uncertainties: 

Construct derived variables: 

Plot uncertainty correlation matrices: 



Machine learning methodology: 
OmniFold
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Q: How can we adjust one distribution to look like another? 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“Likelihood ratio” 

Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 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Q: How can we adjust one distribution to look like another? 
A: Learn a reweighting function based on the ratio of their probability densities. 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In practice, calculating individual densities pA(x) and pB(x) can be hard. 
But neural network classifiers can be used to directly approximate the ratio of the likelihoods. 



The OmniFold procedure requires two datasets* as inputs:  
(*In practice, we use samples from different MC generators as well as systematically-shifted samples to determine uncertainties.) 

● MC sample with events at both detector-level and particle-level 
● Real data 

○ (In fact, it’s the only unfolding method of this kind that has been applied to real data) 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In a multi-stage and iterative process, a series of neural networks are trained to learn a reweighting 
function that maps particle-level MC distributions to particle-level data distributions.  

Note: Binned OmniFold reduces to Iterative Bayesian Unfolding (IBU)!  

OmniFold overview 
OmniFold: A Method to Simultaneously Unfold All Observables (1911.09107) 

https://www.google.com/url?q=https://arxiv.org/abs/1911.09107&sa=D&source=editors&ust=1740530609869420&usg=AOvVaw0xKpdOFEnRux6hJU1RImAK


1. Reweight MC Reco to match Data Reco 
 
2: Reweight MC Truth to match the reweighted 
MC Reco from Step 1  

→ Ensures that if two identical particle-level 
events will be given the same weight, even if 
they are reconstructed differently  

→ Can be thought of as an “averaging” step 
 

25

Each iteration consists of 2 reweighting stages. 



● Iterate this process multiple times to find a 
function that can convert truth-level MC 
to unfolded data.  

● Neural networks are well-suited to this job: 
can process variable-length, 
high-dimensional inputs, and can learn a 
reweighting function by training a classifier 
& reinterpreting its outputs:  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Each iteration consists of 2 reweighting stages. 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After one iteration of our method, the truth-level MC is reweighted to look more like truth-level data.  

OmniFold reweights truth-level MC to estimate “truth-level” data. 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After five iterations of our method, the reweighted truth-level MC is closely aligned with truth-level data.  

OmniFold reweights truth-level MC to estimate “truth-level” data. 



Conclusion
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ML-enabled unfolding is allowing us to reimagine 
how we publish and re-use HEP data. 
And it’s not just the ATLAS Experiment…  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https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf 

https://www.google.com/url?q=https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf&sa=D&source=editors&ust=1740530612225817&usg=AOvVaw0A35Xq7u9EZxwaPUoo-asj


Thanks!
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● Pip-installable unfolding package:  
○ pip install omnifold (https://pypi.org/project/unbinned-unfold/) 

 
● CERN Courier feature article: 

https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf 
 

● ATLAS result documentation  
○ Paper:  

■ arXiv: arXiv:2405.20041 [hep-ex] 
■ CDS: CERN-EP-2024-132 

○ Codebase:  
■ https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024  

○ Datasets:  
■ https://zenodo.org/records/11507450 

https://www.google.com/url?q=https://pypi.org/project/unbinned-unfold/&sa=D&source=editors&ust=1740530612568846&usg=AOvVaw0kan7AgDFop8s9A6C8DHeb
https://www.google.com/url?q=https://cerncourier.com/wp-content/uploads/2025/01/CERNCourier2025JanFeb-digitaledition.pdf&sa=D&source=editors&ust=1740530612568999&usg=AOvVaw0qKcT-ryYoKyA51EL5JXTu
https://www.google.com/url?q=https://arxiv.org/abs/2405.20041&sa=D&source=editors&ust=1740530612569051&usg=AOvVaw3RFxwtwbtr0kL9TZQwma7G
https://www.google.com/url?q=https://cds.cern.ch/record/2899105&sa=D&source=editors&ust=1740530612569114&usg=AOvVaw1gB6mPngPJ2o0-5AntPru4
https://www.google.com/url?q=https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024&sa=D&source=editors&ust=1740530612569184&usg=AOvVaw3F2Y_qAnHnhykQi4WfX59i
https://www.google.com/url?q=https://zenodo.org/records/11507450&sa=D&source=editors&ust=1740530612569230&usg=AOvVaw2VS_BofcSx7HfHGAxRlLnh


Backup
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We apply a standard event selection for Z+jets, then restrict pT
μμ ﹥200 GeV.  

The resulting dataset is 95% Drell-Yan, 3% diboson (ZV), and 2% EW Z+jets.  



Notable parts of the methodology

● NN ensembling:  
○ Neural network training introduces a small uncertainty in our result due to its stochastic nature. 
○ We combat this by ensembling, i.e. taking the median result from 100 independent neural networks.  

■ The final result required training ~25,000 neural networks!  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● Uncertainties:  
○ Experimental (muon efficiency & calibration, track reconstruction, pileup modelling, luminosity) 
○ Theoretical (PDF & ɑS variations, QCD scales, generator tune)  
○ Statistical uncertainty (MC & data, estimated via bootstrapping)  
○ NN uncertainty  
○ Top & Non-Strong 
○ Unfolding (sensitivity to particle-level shape & sensitivity to modeling of features not included in unfolding) 



Validating the method
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● To validate the method, we first run the full analysis using a “pseudo-data” sample:  
○ i.e. MC simulation that has been re-weighted to match data 
○ This has the advantage of letting us compare to the truth-level target distribution 

 
● We run a 𝜒2 compatibility test on the final results:  

○ The resulting p-values are >0.05 for 23 of the variables, but 0.038 for pTj1  
○ Analogous tests using IBU (each variable measured one-at-a-time) produces similar results. 
○ Further validation was done in dedicated kinematic sub-sections (high dimuon pT, EW-enhanced, and 

diboson-enhanced), and similar results were observed.  
 

● We also ran “stress tests” to test OmniFold under (dramatic) distortions, and no major biases were observed. 
 

● Using these tests, we produced a set of recommendations, e.g. ensure that Neff > 5,000 events per bin and statistical 
uncertainty is < 15% in each bin.  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We see excellent closure between the unfolded pseudo-data and the known particle-level target. 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(Even for derived variables!) 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Classifier functions can be re-used to directly approximate a likelihood ratio. 

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss: 

where f(x) is the output of a NN classifier, and our datasets are sampled from these two 
probability distributions pA(x) and pB(x).  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Classifier functions can be re-used to directly approximate a likelihood ratio. 

A vanilla NN classifying between two classes could be trained using binary cross-entropy loss: 

To find where this is minimized, we need to find the extremum, i.e. differentiate with respect to        and set equal to 0:  

Likelihood ratio Rescaling of classifier output 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OmniFold reweights truth-level MC to estimate “truth-level” data. 

Let’s say we have two datasets: our MC simulation 𝒩(𝜇=0, 𝜎=1) and our data 𝒩(𝜇=1, 𝜎=1.5).  
 
Due to detector effects, the distributions will look different at truth-level vs. at reco-level.  

(sharper peaks)  (wider peaks) 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In reality, we’ll never have access to the truth-level data – the best we get is the reco-level data.  
 
Our goal, then, is to learn a way to transform our truth-level MC into truth-level data.  

OmniFold reweights truth-level MC to estimate “truth-level” data. 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Classifier-based unfolding works well in practice and has several advantages. 
In particular, it learns small corrections to MC, meaning it starts from a good baseline solution.  

Maximum-likelihood classifier-based unfolding is also prior-independent. 


