

Constraints on aTwo Mediator Dark Matter Model from Simplified Models

André Lessa (UFABC – São Paulo)

RiF Workshop February 25th, 2025

In collaboration with M. Altakach, S. Kraml, S. Narasimha, T. Pascal, C. Ramos, Y. Villamizar and W. Waltenberger

arXiv: 2409.12942

Why Simplified Models?

- Most BSM searches are now interpreted using simplified models (SMS)
- They provide a nice framework for less model independent results
- Can be used to compare constraints from distinct searches
- But they can also be used for re-interpretation!

- <u>Pros:</u>
 - Many SMS results have been produced by the experimental collaborations
 - No need for recasting or event simulation
 - Sometimes the only alternative for complex searches
 - Very fast!

SModelS v3

- SModelS → a tool for the "last mile"
- It has been applied to study many BSM models
- Until recently contained mostly R-Parity preserving SUSY-inspired SMS
- Version 3 can now handle arbitrary simplified models (+ talk on Thursday)
 - including "non-SUSY" results from the DM/Exotica groups

- A minimal (almost UV complete) DM model: SM + U(1)'
 - New gauge boson
 - New scalar (breaks U(1)') $\longrightarrow Z'_{\mu}, \ \phi, \ \chi$
 - New Majorana fermion (DM)
 - UV Lagrangian:

$$\mathcal{L} = g_q \sum_{q} \bar{\psi}_q \gamma_\mu \psi_q Z'^\mu - \frac{1}{4} F'^{\mu\nu} F'_{\mu\nu}, \qquad \bullet \text{ U(1)' breaking:}$$

$$\mathcal{L}_{\phi} = (\mathcal{D}^{\mu} \phi)^{\dagger} (\mathcal{D}_{\mu} \phi) - \mu_2^2 |\phi|^2 - \lambda_2 |\phi|^4 - \lambda_3 |\phi|^2 |H|^2, \qquad \bullet \text{ U(1)' breaking:}$$

$$\mathcal{L}_{\chi} = \frac{i}{2} \overline{\chi} \partial \chi - \frac{1}{2} g_{\chi} Z'^{\mu} \overline{\chi} \gamma^5 \gamma_{\mu} \chi - \frac{1}{2} y_{\chi} \overline{\chi} (P_L \phi + P_R \phi^*) \chi \qquad \phi - H \text{ mixing}$$

$$(\sin \alpha)$$

• Free parameters: $\{m_{Z'}, m_S, m_\chi, g_\chi, g_q, \sin \alpha\}$

André Lessa | UFABC

0.4

-0.3

L0.0

 $\sigma_{\rm UL}$

• New Scalar-Higgs mixing:

Two Mediator DM (2MDM)

- 2MDM model LHC@13 TeV 2MDM model SModelS v3.0.0 10^{3} 0.6 $pp \to Z'$ 10^{2} $pp \to S$ 0.5 10^{1} 0.4 $\sigma ~(pb)$ $\sin(\alpha)$ 10^{0} limit from Higgs signal strengt. 0.30.2 10^{-1} $g_q = 0.1$ 10^{-2} 0.1 $\sin \alpha = 0.3$ 10^{-3} 0.0600 200800 000 800 1000 400 1200 1400 200600 400 $m_S (\text{GeV})$ $m_{S/Z'}$ (GeV) Loop suppressed limit from monojet searches
- Production cross-sections:

- The new scalar has a neglible impact on the LHC signal!
- $pp \rightarrow Z^{'} \rightarrow q \bar{q}$ (dijet resonances) $pp \rightarrow Z^{'} \rightarrow \chi \chi$ (monojet) • We consider only the Z' signal:

- Signal efficiency mostly depends on: $m_{Z'}, m_{\chi} \ (\Gamma_{Z'})$
- What can be directly used:

• What is often found within the reinterpretation material:

- Plots in digital format are not always available!
- Limits on couplings or other model parameters are more model dependent
- The signal/model assumptions are not always clear → can be avoided with a more model-independent presentation

• The Z' can be a broad resonance:

- The limits strongly depend on the width
- Many resonance searches do not give width-dependent limits! (for these we assume validity only for width/mass < 1%)

• Simplified model results considered:

ID	Signature	Luminosity	SMS Topology	Type			
ATLAS-EXOT-2019-03 [12]	Dijet resonance	$139 {\rm ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj, b\bar{b}$	UL	Efficiency Maps computed using recasting		
ATLAS-EXOT-2018-48 [13]	$t\bar{t}$ resonance	$139 {\rm ~fb^{-1}}$	$pp \to Z' \to t\bar{t}$	UL			
CMS-EXO-19-012 [14]	Dijet resonance	$137 {\rm ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj, b\bar{b}$	UL			
CMS-EXO-20-008 [15]	<i>b</i> -jet resonance	$138 {\rm ~fb^{-1}}$	$pp \to Z' \to b\overline{b}$	UL			
CMS-EXO-20-004 [16]	Monojet	$137 { m ~fb^{-1}}$	$pp \rightarrow Z', S \rightarrow \chi \chi$	EM			
ATLAS-EXOT-2018-06 [17]	Monojet	$139 {\rm ~fb^{-1}}$	$pp \to Z' \to \chi \chi$	UL			
ATLAS-SUSY-2018-22 [18]	Multi-jet plus E_T^{miss}	$139 { m ~fb^{-1}}$	$pp \to Z' \to \chi \chi$	EM			
Run 1 - 8 TeV							
CMS-EXO-16-057 [20]	<i>b</i> -jet resonance	$19.7 { m ~fb^{-1}}$	$pp \to Z' \to b\overline{b}$	UL			
CMS-EXO-12-059 [21]	Dijet resonance	$19.7 {\rm ~fb^{-1}}$	$pp \rightarrow Z' \rightarrow jj$	UL			
ATLAS-EXOT-2013-11 [22]	Dijet resonance	20.3 fb^{-1}	$pp \to Z' \to jj$	UL			

• We assume CMS monojet and ATLAS multijet to be uncorrelated → statistical combination of analyses

• <u>2MDM scan:</u>

g_q	g_{χ}	$m_{\chi} \; (\text{GeV})$	$m_{Z'}$ (GeV)	$N_{\rm points}$
0.1, 0.15	0.01	65	(200, 3000)	6k
0.15, 0.25	$1.0, \sqrt{2}$	$(65, m_{Z'}/2)$	(200, 3000)	6k
0.1	0.6	$(65, m_{Z'}/2)$	(200, 3000)	6k

André Lessa | UFABC

Two Mediator DM (2MDM)

• Limits from jet(s) plus MET:

• Monojet versus Resonance searches:

Conclusions

- Simplified model results can be highly useful for reinterpretation
- Producing SMS results in a systematic way can greatly benefit the reinterpretation community:
 - \Box Limits on σxBR (for UL maps) and not on signal strengths!
 - Coverage over the relevant simplified model parameters (masses, ...) and not over underlying model parameters!
 - □ For resonance searches include the width dependence
 - \Box Whenever possible, provide efficiency maps (A ϵ)
 - □ Statistical information (e.g. pyhf likelihoods)
- Applying the current results to the 2MDM revealed several issues:
 - lack of width-dependent SMS results
 - no (13 TeV) coverage for small masses
 - limits on "secondary" model parameters (couplings, tan β , ...)
 - few efficiency map results,...

Thanks!

• Other issues with SMS results

• Limits from jet(s) plus MET:

• Analyses combination: $\mathcal{L}_{tot}(\mu) = \prod_{i} \mathcal{L}_{i}(\mu)$

• Resonance searches:

