# **High Performance Computing in ATLAS**

HEP/HPC Strategy Meeting 2025-01-30

Mario Lassnig (CERN) on behalf of the ATLAS Experiment







# **Introduction :: Opportunistic resources in ATLAS**

- ATLAS has a long history using opportunistic resources
- Harnessed HPCs for over a decade now
  - First generation HPC integration
    - For example, Cori & Titan (US) or SuperMUC (DE)
    - Majority requiring dedicated task submission
  - More recently, we have had <u>enormous success</u>
    - EuroHPCs <u>Vega</u> (SI) and <u>Karolina</u> (CZ)
    - <u>Perlmutter</u> and <u>TACC</u> (both US)
  - Several sites deploy HPCs as part of their pledge
    - For example, MareNostrum (ES) and Alps (CH)
    - Not opportunistic in this case

# • ATLAS has also been able to use cloud resources

- Cloud projects at ATLAS institutes such as Victoria & Oslo
- $\circ$  ~ Commercial cloud integration with Amazon and Google
- Very recently, and following this work, a US Tier-2 has deployed cloud resources as pledge







## HPCs give us access to large-scale compute resources beyond WLCG commitments

- The WLCG is already providing these resources significantly above the pledge 0
- On top of that, HPCs allow us to increase compute capacity even more by 30-40% Ο
- Looking at the last 90 days, we were running ATLAS jobs on 15+ HPC sites with various levels of integration Ο

## HPCs play a key role in ATLAS Computing but come with significant challenges

- They operate outside our standard WLCG policies, especially related to resource planning
- Lack straightforward WLCG interconnectivity, especially related to grid storage and CVMFS
- Enforce strict security and access policies with custom onboarding 0



#### Job HS23 by Resource ()

# HPC resource usage :: Last 8 years



max avg ~

|                                                                                                                | Onera       | tional ir | ΔΤΙΔς       | for mar        | w vears    | but var          | v in lev        | els of in   | tegrati   | on              |         |            |             |        | New                               | max      | vg v   |
|----------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------|----------------|------------|------------------|-----------------|-------------|-----------|-----------------|---------|------------|-------------|--------|-----------------------------------|----------|--------|
|                                                                                                                | Opera       |           |             |                | iy years,  | , but vui        | ymicv           |             | icgiuti   | on              |         |            |             |        |                                   | 2.83 MII | 10.4 K |
|                                                                                                                | 0           | Some act  | like grid s | sites, allov   | wing ATLA  | .S jobs to r     | run with n      | ninimal a   | daptatio  | n               |         |            |             |        |                                   | 200 K    | 74.2 K |
|                                                                                                                | 0           | Some nee  | ed edge se  | ervices: H     | arvester a | nd/or AC         | F with cor      | mbination   | s of pull | /push iob       | )S      |            |             |        | praguelcg2                        | 571 K    | 69.6 K |
|                                                                                                                | 0           | Come LID  |             |                | dedicate   | d contoine       |                 |             | deede     | , p 0.01. j 0 . |         |            |             |        | <ul> <li>NDGE-T1</li> </ul>       | 145 K    | 65.0 K |
|                                                                                                                | 0           | зотпе пр  | c sites ne  | eu to use      | ueuicateo  |                  | ers for spe     | ecine wor   | kiuaus    |                 |         |            |             |        | - OLCF                            | 400 K    | 34.0 K |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - LRZ-LMU                         | 167 K    | 34.0 K |
|                                                                                                                | ΛΤΙ Λ Ο     |           | Cc in v     | nious n        | and as of  | fonorati         | ion             |             |           |                 |         |            |             |        | — pic                             | 209 K    | 30.4 K |
| •                                                                                                              | AILAS       | uses ni   |             | anous n        | ioues of   | operation        | 1011            |             |           |                 |         |            |             |        | - RIVR.UM                         | 102 K    | 29.8 K |
|                                                                                                                | 0           | Can run t | he full job | o mix, incl    | uding ana  | lysis and i      | s fully into    | egrated w   | ith the v | vorkflow        | systems | , e.g. Veg | а           |        | - IFIC-LCG2                       | 131 K    | 19.7 K |
|                                                                                                                | $\circ$     | Poquiro c | nocial cub  | ,<br>miccion t | acks sot u | ,<br>in hy tho r | ,<br>vroductiou | n manago    | rc and a  |                 |         | ll Sim or  |             |        | - CERN-PROD                       | 54.3 K   | 15.2 K |
| • Require special submission tasks set up by the production managers and are usually only full sim, e.g. NERSC |             |           |             |                |            |                  |                 |             |           |                 |         | 3. NERSC   |             | - TACC | 110 K                             | 7.87 K   |        |
|                                                                                                                |             | ■ B       | ut Karoli   | na can run     | any simula | tion, or Bar     | bora can ru     | un any proc | duction M | CORE wor        | kload   |            |             |        | - UAM-LCG2                        | 67.8 K   | 7.13 K |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - ANLASC                          | 245 K    | 6.85 K |
| Job LIC                                                                                                        | DO NU ATL A |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - UM6P                            | 33.9 K   | 6.43 K |
| JOD H2                                                                                                         | 23 by ATLAS | s site 🕕  |             |                |            |                  |                 |             |           |                 |         |            |             |        | - MWT2                            | 155 K    | 5.92 K |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - MPPMU                           | 28.2 K   | 4.75 K |
| 5 Mil                                                                                                          |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - TOKYO-LCG2                      | 176 K    | 3.50 K |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - DESY-HH                         | 27.3 K   | 3.04 K |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | - RRC-KI-T1                       | 3.82 K   | 713    |
| 4 141                                                                                                          |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | <ul> <li>UNI-FREIBURG</li> </ul>  | 12.0 K   | 471    |
| 4 1/11                                                                                                         |             |           |             |                |            |                  |                 |             |           | A               |         |            |             |        | - IN2P3-CC                        | 4.37 K   | 80.5   |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | <ul> <li>BEIJING-LCG2</li> </ul>  | 1.18 K   | 29.1   |
|                                                                                                                |             |           |             |                |            |                  |                 |             |           |                 |         |            |             |        | <ul> <li>BNL-ATLAS-OPP</li> </ul> | 227      | 8.19   |
| 3 Mil —                                                                                                        |             |           |             |                |            |                  |                 |             |           |                 | -       | A          |             |        |                                   |          |        |
| 2 Mil —                                                                                                        |             |           |             |                |            |                  |                 |             |           |                 | V       |            |             |        |                                   |          |        |
| 1 Mil —                                                                                                        |             |           |             |                |            | ~                |                 |             |           |                 |         |            |             | V      |                                   | ÿŸ       |        |
| 0                                                                                                              | 07/2017     | 01/2018   | 07/2018     | 01/2019        | 07/2019    | 01/2020          | 07/2020         | 01/2021     | 07/2021   | 01/202          | 2 07/20 | 022 01/2   | 023 07/2023 | 01/202 | 4 07/2024                         | 01       | /2025  |

# **HPC workloads :: Last 8 years**



max avg

196 K 75.1 K

59.1 K 11.1 K

85.3 K 5.83 K

83.0 K 5.66 K

52.1 K 5.50 K

25.2 K 2.21 K

38.8 K 1.70 K

MC Simulation Full

MC Reconstruction

MC Event Generation

MC Simulation Fast

Group Production

User Analysis

Group Analysis

## Operational in ATLAS for many years, but vary in levels of integration

- Some act like grid sites, allowing ATLAS jobs to run with minimal adaptation 0
- Some need edge services: Harvester and/or ACT with combinations of pull/push jobs Ο
- Some HPC sites need to use dedicated containers for specific workloads Ο

## ATLAS uses HPCs in various modes of operation

- Can run the full job mix, including analysis and is fully integrated with the workflow systems, e.g. Vega
- Require special submission tasks set up by the production managers and are usually only Full Sim, e.g. NERSC





# • Operational management

- This is very decentralised, with individual sites assuming responsibility for their operations
  - Personal connections between people carry the success of the integration and operation
  - Yet still, in many cases, ADC central operations team needs to commit effort to help solve issues
- Shared usage of HPC resources across multiple sites is observed in some instances, and vice versa
  - For example: PIC, IFIC, UAM for MareNostrum; CZ for Karolina, Barbora, LUMI; ND and CH for LUMI & PUHTI, DE NHRs ...

# • Commitment of resources

- The "use-it-or-lose-it" policy for CPU allocations at some HPCs is unfortunate
  - Sometimes we might not have the right amount of jobs, or the right job mix, available
- National FAs typically co-fund HPCs and some contribute them as pledged resources
  - For ATLAS, only resources that can execute the full job mix can be pledged
  - Must avoid a scenario where large resources can only run limited number of workflows but there are technical constraints
  - Supplying resources in bursts or only for a limited period of time also doesn't fit our needs we prefer steady state
- Commercial interconnect mechanisms, like Globus for data exchange, goes against the open ATLAS spirit

# • Commitment in time

- Grid sites are typically expected to remain operational for the duration of the experiment
- HPC machines typically operate for several years before being decommissioned and/or replaced
  - This can involve significant architectural or technological changes, requiring extra work from us
  - Especially, as of now, GPU-heavy HPCs are not useful for ATLAS
  - Some partitions, e.g., GPU, can be come outdated after a few years
  - The potential impact of HEP in the architectural/technological decision making process is unclear
  - Need to be compatible with different timescales of HPC sites vs HPC machines

# **Thoughts on future integration**



50k HIMEM submissions/day 10M HS23/month

Examples

Harvester, CRIC, ... Specifically IAM-compatible tokens Operator on site to help with issues

GPUs, RISC-V, FPGAs, ... <insert favourite here> Fully exploit manycore slots

HTTP/WebDAV Latency, namespace, access DTNs to/from grid sites Frontier, CVMFS

Al/ML-style jobs Can HPCs be analysis infrastructure?

### • Provisioning

- Dynamic allocation based on available resources
- Plannable long-term allocations

#### • Interfaces

- Ensure compatibility with our central systems
- Integration with HEP AAI mechanisms
- The human interface

### • Software

- Heterogeneous hardware support in our software
- Portable AI/ML libraries
- Task splitters

#### • Data

- Open data management protocols and interconnect
- $\circ$  Scalable ingress and egress integrated with experiment data management
- Exploitation of caching & network capabilities
- Local & remote access to support data and libraries

## • Scheduling

- Complex workflows
- User analysis