

FUTURE COLLIDER Update to the Hadronic Channel of the FCC-ee Higgs CP Study

Nicholas Pinto (JHU), Andrei Gritsan (JHU), Jan Eysermans (MIT), Valdis Slokenbergs (JHU)

Virtual Session of 3rd ECFA Workshop

17 Oct 2024

Massachusetts Institute of Technology

Parameters of Interest:

arXiv:1309.4819

Parameters of Interest:

arXiv:1309.4819

Previous Results:

- Last presented on <u>18 June 2024</u>.
- Target: ee \rightarrow ZH, H \rightarrow X (recoil), Z $\rightarrow \mu\mu$, ee (6.8%):
- Detector simulation uses DELPHES fast sim.
- Template fit made from optimal observables.
- Yields determined at integrated luminosity of $\underline{7200 \ fb^{-1}}$.
 - (Expected int. luminosity after ~3 years of operation.)

A Word on MELA:

- <u>Matrix Element Likelihood Approach.</u>
- From event kinematics, calculates transition probability from a given initial state to a desired final state.

Previous Results:

At 68% Confidence Level

• $\mu\mu \sim \pm 7 * 10^{-5}$ • $ee \sim \pm 8.5 * 10^{-5}$

Nicholas Pinto – Johns Hopkins University –17 October 2024

Updates for Today:

- Include $H \to X$, $Z \to q\overline{q} (u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c})$ and $Z \to b\overline{b}$.
 - Separation is done for background rejection
- Describe selection for hadronic final state.
- Present preliminary combined likelihood fit for
 - $Z \rightarrow q\bar{q}, bb, ee, \mu\mu \ (\sim 76\%).$

Event Selection:

- Cut 1 and Cut 2:
 - Reject events with > 2 e^{\pm} and > 2 μ^{\pm} .
- Reconstruct Z from dijet system
 - (jet clustering performed by <u>FastJet</u>):
 - Durham kt clustering to exclusive 4 jets.
 - From all combinations of jets, select dijet candidate that minimizes:
 - $\chi^2 = 0.8(M_{Dijet} M_Z)^2 + 0.2(M_{Recoil} M_H)^2$
 - Enforce $flavor(q) = flavor(\overline{q})$

Overview of $Z \rightarrow q\bar{q}$ Analysis:

- Selection is determined by scores assigned by <u>ParticleNet</u> (arXiv:<u>1902.08570</u>)
- Each jet assigned a score for each flavor.
 - Flavors = Q (u or d), S, C, B, and G.
- Scores range from [0, 1].

Overview of $Z \rightarrow q\bar{q}$ Analysis:

Split analysis into two channels based on the sum of the B-scores:

Overview of $Z \rightarrow q\bar{q}$ Analysis:

Overview of $Z \rightarrow q\bar{q}$ Analysis:

qq Event Selection (N-1 Plots):

bb Event Selection (N-1 Plots):

Event Selection:

FCCAnalyses: FCC-ee Simulation (Delphes)

Nicholas Pinto – Johns Hopkins University – 17 October 2024

Analysis Cutflow:

qq:

- Sig:Bkg ~ 0.12
- Selection Efficiency: ~15%

bb:

- Sig:Bkg ~ 0.24
- Selection Efficiency: ~19%

qq-Template Observables:

bb-Template Observables:

Hadronic Template Fits:

- 3D Histogram filled with $\cos \theta_1, \cos \theta_2, \Phi$ on each axis.
- 10 bins/ axis, 1000 bins total.
- 0⁺, 0⁻, and interference templates created with signal.

Likelihood Fit with Hadronic Templates:

At 68% Confidence Level

•
$$qq \sim \pm 6 * 10^{-5}$$

•
$$bb \sim \pm 1.5 * 10^{-4}$$

0.0001

0.0002

0.0003

Nicholas Pinto – Johns Hopkins University – 17 October 2024

0.0000

 f_{CP}^{HZZ}

FullCombination

-0.0002

-0.0001

0.00

-0.0003

Conclusions

- Combined result represents ~79% of Z decays.
- Need to incorporate more statistics on WW and $Z^* \rightarrow q\bar{q}$ backgrounds.

Backup