Strange-quark Tagging for Higgs and EW Physics

Caterina Vernieri on behalf of the **[HtoSS group \(twiki\)](https://twiki.cern.ch/twiki/bin/view/ECFA/HiggsToSS)** Valentina Cairo, Taikan Suehara, Loukas Gouskos, Matt Basso, John Alison, Yotam Soreq, Valerio Dao, Karsten Koeneke

ANATIONAL ACCELERATOR

October 17, 2024

Higgs to strange coupling is an appealing signature to probe new physics

SM measurement, necessity to define BR(H \rightarrow ss) on the TH side \Rightarrow LHCHWG <u>M. Spira</u>

SM, EFT, and beyond

1811.00017 1908.11376 2101.04119

- It allows for large couplings of additional Higgs to strange/light quarks
- No flavor-changing neutral currents

Is the Higgs the source for all flavor?

In a **Spontaneous Flavor Violation** model new physics can couple in a strongly flavor dependent way if it is aligned in the down-type quark or up-type quark sectors

P. Meade

Tagging strange is a challenging but not impossible task for future detectors at e+e-

s-tagging

-
-
-
-

2101.04119 2203.07535

Detectors at future e+e-

Stringent detector requirements from ZH reconstruction

Detector designs at e⁺e⁻ colliders are converging to very similar strategies

- Strong magnetic field 2-5 T
- (Ultra) low material budget tracker (<0.3% X0)
	- Close to the interaction region (10-25 mm)
- High granularity calorimetry
	- Particle Flow reconstruction \rightarrow plays a big part in many designs

Caterina Vernieri ・ ECFA WG1・ October 17, 2024 **SLAC**

[arXiv:2003.01116](https://arxiv.org/abs/2003.01116)

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

SLAC Caterina Vernieri ・ ECFA WG1・ October 17, 2024

- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)
- \cdot < 5 GeV, time-of-flight (i.e. 100 ps from ECAL)

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

IDEA-like detector and Particle cloud graph neural network (fast sim)

- Both TOF and dN/dx $(3\sigma < 30$ GeV) included as inputs
- No PID to PID with dN/dx \rightarrow at fixed mistag, efficiency doubles

Strange tagging performance

[PRD 101 056019 \(2020\)](https://arxiv.org/abs/1902.08570) [EPJ C 82 646 \(2022\)](https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1) [L. Gouskos @FCC week](https://indico.cern.ch/event/1202105/contributions/5396831/attachments/2661284/4610390/lg_fccee_higgscouplings.pdf)

arXiv:2203.07622 <u>.. Gouskos @FCC week</u>

Exploit Z boson reconstruction in the ZH associated mode

Analysis strategy to target H→ss

- At 240/250 GeV the total Zh cross section can be extracted independently of the Higgs boson's detailed properties by counting events with an identified Z boson
- Looking at 0 or 2 leptons Z decay modes
	- **New** fully hadronic final state

SLAC

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
	- No PID worsen the results by 8%
- FCC for Z(vv) only sets a limit of κ_s < 1.3 at 95% CL with 10/ab at 240 GeV and 2 IPs

Constraints on s-coupling

[arXiv:2203.07535](https://arxiv.org/pdf/2203.07535.pdf) .. Gouskos @FCC week

SLAC

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
	- No PID worsen the results by 8%
- FCC for $Z(vv)$ only sets a limit of κ_s < 1.3 at 95% CL with 10/ab at 240 GeV and 2 IPs

FCCAnalyses: FCC-ee Simulation (Delphes)

 $\sum_{10^{15}}$

Constraints on s-coupling

$\frac{1}{2}$ **Work is on going to evaluate performance for 10/ab at 240 GeV + tagger improvements Besides IDEA & ILD, also SiD and CLD new studies**

SLAC Caterina Vernieri ・ ECFA WG1・ October 17, 2024

Evaluating simultaneously all hadronic Higgs final states and impact of PID

NEW - Constraints on s-coupling

[A. Maloizel ECFA 2024](https://indico.in2p3.fr/event/32629/contributions/142635/attachments/87448/131997/ECFA_MALOIZEL_HiggsCouplingsZHFCC_fin.pdf) **[I. Veliscek ECFA 2024](https://indico.in2p3.fr/event/32629/contributions/142637/attachments/87432/132001/ZH%20All%20Had%20%5BFCC%20-%2011%20Oct%5D-4.pdf)**

Evaluating impact of different silicon and particle-identification detector configurations

IDEA: tagging performance vs detector configurations

- Current IDEA pixel/tracking system:
	- beam pipe at 1cm and 3 innermost silicon barrel layers: 1.2cm, 2cm, 3.15cm
	- PID: cluster-counting (dN/dx) + 30ps ToF system
- Number of pixel layers and various configurations have been tested
	- Hit resolution & position first layer
	- PID capabilities: timing, energy loss (gas/silicon)
- *Findings*:
	- Very limited impact of TOF mass measurement on strange tagging
	- Ideal PID shows visible enhancement, especially at low efficiency

- Factor (3-9) improvement using ParT from LCFIPlus
	- More work on going to tune the network, optimize input variables and separate embedding for tracks/neutrals
- *Findings*:
	- \cdot dE/dx is essential for Particle ID in ILD As well as ToF, but only effective in low energy tracks (which are less important in strange tagging)
- Still investigating inconsistencies with FCC/IDEA (much better) results based on Delphes samples
- Strange tagging dependence on PID performance to be investigated
	- Being studied with various detector configurations
- **GNN based PFA** for track-cluster matching yields to better performance $-$ to replace PandoraPFA in \sim a few years

Expected a large improvement wrt LCFIPlus based on full sim

ILD new tagger with Particle Transformers

11

NEW - SiD detector studies

Using FCC/IDEA results as a benchmark

Vertex Inner Radius (cm) Tracker technology Outer Tracker Radius (m) **ECal thickness HCal thickness HCal Outer Radius (m)** Solenoid field (T) Solenoid length (m) Solenoid Radius (m)

NEW - SiD detector studies

- *SiD:* all silicon vtx and tracker, sampling ECAL and HCAL, 5T B-field
- *IDEA:* silicon vtx, DCH + Si wrapper, DRO calorimeter, 2 T B-field \rightarrow PID with dN/dx, TOF, supreme JER

Vertex Inner Radius (cm) Tracker technology Outer Tracker Radius (m) **ECal thickness HCal thickness** HCal Outer Radius (m) Solenoid field (T) Solenoid length (m) Solenoid Radius (m)

Using FCC/IDEA results as a benchmark

Determining the physics impact of detector choices is paramount for detector design

Towards a flexible framework for detector studies

Systematic approach to evaluate different detector/sub-detector configurations based on the impact on jet identification

- Compare different detector concepts (SiD and IDEA) with FastSim
	- Reproduced IDEA published results based on **[IDEA Delphes card](https://github.com/delphes/delphes/blob/master/cards/delphes_card_IDEA.tcl)**
	- Compare FastSim against FullSim
- End-product:
- A versatile framework, building on existing tools, critical for R&D exploration
- Answer *how detector variations impact precision on Higgs couplings.*
-
-

Δ*(***σ** *higgs coupling)*

?

Jet flavor tagging for SiD using Particle Net

- Existing Delphes card for SiD, based on ILC TDR performance: [https://](https://dsid.hepforge.org/) dsid.hepforge.org/ (~9 years old).
- A new Delphes card to include newer [TrackCovariance](https://github.com/delphes/delphes/blob/master/modules/TrackCovariance.cc), [ClusterCounting](https://github.com/delphes/delphes/blob/master/modules/ClusterCounting.cc) modules, *assuming same tracking performance as for IDEA:* **SiD_o2_v04_C**
- Also considered a modified scenario for SiD, with the resolution of the ECAL and the HCAL matching that of the IDEA dual calorimeter → **SiD_o2_v04_D**.
	- Improvement in b-tagging driven by calorimeter resolution \rightarrow better reconstruction of PFOs

14

SiD different detector configurations

Two configurations for SiD detector concept vs IDEA

- *Significant gains in strange vs udg and b discrimination from PID.*
- Improved calorimeter resolution only brings

SiD_o2_v04_C (_D)

IDEA

Using tagging performance as a benchmark

NEW - CLD full vs fast studies

- Loss in performance when moving from fast to full simulation
	- Fake neutrals and lost tracks in full sim
	- misidentification probability of 10−2 for c vs. ud : 82% (fast sim) / 61% (full sim)
	- misidentification probability of 10−2 for b vs. ud : 97% (fast sim) / 88% (full sim)
- Tracks for charged particles PFOs for neutral particles - helps recovering performance
- Adding vertex information does not improve tagging performance

[S. Aumiller ECFA 2024](https://indico.in2p3.fr/event/32629/contributions/142548/)

- Hadronization in PYTHIA is modelled using Lund *string fragmentation*
	- partons move apart at high energies, which in turn stretches the confining potentials and leads to string breaking
- This leads to the two resulting strange hadrons also forming adjacent to each other, and a local strangeness conservation
- Further qualitative modelling variations could include:
	- thermodynamical string fragmentation
	- explicit modelling of hyperfine splitting effects
	- effects of a fluctuating or time-dependent string tension
	- and/or effects of string excitations
- Ultimately in-situ calibrations will validate the model assumptions
	- PID capabilities will be critical to provide enough information to test hadronization processes
	- Tera-Z will provide $> 10^5$ M bottom jets and $> 10^4$ M strange jets

Review of the state of the art and challenges

NEW Fragmentation modelling

Peter Skands and Javira Altmann [L.Gouskos ECFA 2024](https://indico.in2p3.fr/event/32629/contributions/140463/attachments/87535/132136/lg_bcfrag_ecfa_paris_2024_v1.pdf)

- Hadronization in PYTHIA is modelled using Lund *string fragmentation*
	- partons move apart at high energies, which in turn stretches the confining potentials and leads to string breaking
- This leads to the two resulting strange hadrons also forming adjacent to each other, and a local strangeness conservation
-

• Further **qualitative modelling variations computer** included:

-
- . expli^{Fragmentation & Gluon Splitting (BCFrag & GSplit)}
-
- and/<mark>Wikis/FocusTopics/BCfrag</mark>
- Ultimate
	- PID capabilities will be critical to provide enough information to test hadronization processes
	- Tera-Z will provide $> 10⁵$ M bottom jets and $> 10⁴$ M strange jets

Review of the state of the art and challenges

NEW Fragmentation modelling

Peter Skands and Javira Altmann [L.Gouskos ECFA 2024](https://indico.in2p3.fr/event/32629/contributions/140463/attachments/87535/132136/lg_bcfrag_ecfa_paris_2024_v1.pdf)

Contents

- 2 Theoretical motivation and phenomenological landscape
	- 2.1 Interpretation as Higgs-strange Yukawa coupling
- 3 Fragmentation modelling: state of the art and challenges
- 4 Target physics observables
- 5 Algorithm R&D: Jet flavour tagger
- 6 Target analysis techniques
- 7 Target methods to be developed
- 8 Target detector performance aspects

Towards the end of the year report

- Work on going to evaluate impact of (sub)detector resolutions on tagging performance :
	- the complementarity in momentum reach of charged hadron ID from dN/dx, dE/dx, ToF, RICH

• *Important to evaluate simultaneously other Higgs benchmarks*

- A new framework is available (based on Delphes/Weaver/FCCAnalyses) to evaluate and compare jet flavor tagging performance of different detector concepts on an equal footing *.*
- *Important caveat* in these studies: relying on fast-simulation!
	- We need to benchmark our results against realistic, full-simulation
		- Work on going for CLD and SiD

Analysis pipeline for jet flavor tagging studies

- Whizard 3.1.4 + Pythia6
- $Z(\rightarrow$ vv) $H(\rightarrow$ uu/dd/cc/ss/bb/ gg)
- 1.5M events (3M jets) per flavor

• Jet Clustering on PFCandidates and tree flattening using **[FCCAnalyses](https://github.com/HEP-FCC/FCCAnalyses)**

2. Fast simulation:

[Delphes](https://github.com/delphes/delphes) with edm4hep output using **[k4SimDelphes](https://github.com/key4hep/k4SimDelphes)**

- Using the **weaver** framework
- Use 1.8M jets/per flavor with 80%/20% train-val split

3. Preprocessing:

4. ParticleNet training:

5. Infererce

• Within **FCCAnalyses**

• Using 1.2M jets/flavor

[Eur. Phys. J. C](https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1) **[82](https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1)**[, 646 \(2022\)](https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1) : Jet Flavour Tagging for Future Colliders with Fast Simulation

SiD - validation

SiD - validation

SLAC Caterina Vernieri ・ ECFA WG1・ October 17, 2024

- Neutral Hadron energy resolution
-
- dE/dx and dN/dx: powerful PID essential for H-strange coupling • Timing resolution to be further investigated but less critical for s-tagging • RHIC for improved reconstruction of $K^{+/-}$ at high momentum (< 30 GeV)
-

Lesson learned and moving forward

Use $H \rightarrow ss$ to inform detector design, while monitoring other benchmarks' performance

SLAC Caterina Vernieri ・ ECFA WG1・ October 17, 2024

ILD-like detector with full simulation and Recurrent NN

- Includes PDG-based PID \rightarrow assuming perfect detector capability
- At 50% s-tag efficiency, 90% background rejection
- No PID to PID < 10 (30) GeV \rightarrow at fixed mistag, 1.5x (2x) efficiency

Strange tagging performance 2/2

Particle cloud represented as a graph

Jet representation: Particle cloud i.e. unordered set of particles Network architecture: Graph Neural Networks Particles: vertices of graph; interactions b/w particles: edges of graph Hierarchical learning approach: $local \rightarrow global$ structures

[PRD 101 056019 \(2020\)](https://arxiv.org/abs/1902.08570) [EPJ C 82 646 \(2022\)](https://link.springer.com/article/10.1140/epjc/s10052-022-10609-1)

Moving forward

e/π separation with TR+dE/dx

e/π separation via detection of transition radiation photons

Transition radiation is emitted when a highly relativistic charged particle with a Lorentz factor $y > 10³$ traverses boundaries between materials of different dielectric constants.

To achieve the best e/π separation, TR and dE/dx-based measurements are combined in a single likelihood function for a particle type.

[ATLAS Twiki](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-128/)

Caterina Vernieri ECFA Workshop・Paestum・October 10, 2023

Light Yukawa ?

