

Metrology requirements for the integrated luminosity measurement at ILC

I. Bozovic I. Smiljanic & G. Kacarevic

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia Supported through Grant No. 7699827 Project IDEAS HIGHTONE-P

October 2024

3rd ECFA WS Overflow

Overview

- Small angle Bhabha scattering
- Luminometer at ILC
- Novel metrology study

- Preparing the ECFA Focus Topics paper (<u>arXiv:2401.07564v2 [hep-ph]</u>) we have realized
- \Rightarrow NO METROLOGY STUDY EXISTS SINCE TESLA TIMES [LC-DET-2005-004 (2005)]
- We have performed a study at: Z-pole, 250 GeV, 500 GeV and 1 TeV

(currently under internal ILD review to be submitted to PTEP)

Low angle Bhabha scattering (LABS)

- Dominantly QED scattering at low polar angles
- BHLUMI 4.04: NLO QED corrections; higher-order QED corrections through the exclusive YFS exponentiation; No NLO EW corrections; partial implementation of schannel y/Z exchange
- Hadronic vacuum polarization in t-channel photon exchange can be a limiting factor for the x-section precision; Revised δσ_B for LEP analyses 3.7·10⁻⁴ [Physics Letters B 803 (2020) 135319]

3rd ECFA WS Overflow

Very forward region

Luminometer

Luminometer prototype

- High precision in polar angle measurement (~20 μ rad)
- \Rightarrow Shower position and energy measurement on top of widely spread background
- \Rightarrow Compactness small Moliere radius

IIIII

Feasibility demonstrated by the FCAL R&D Collaboration

October 2024

Design and performance

- 8 W absorber plates
- External electronics

October 2024

Metrology

- 10 million low angle Bhabha scattering events using BHLUMI V4.04
- (20-200) mrad to allow events with non-collinear final state radiation to contribute
- No full detector simulation, no beam-beam effects, only FV (41-67) mrad
- s-axis, asymmetric counting (∆r=1mm)

Dissipation of reconstructed hits in the luminometer front plane

Distance between luminometer halves (symmetric)

8

Axial vibrations of the luminometer

Radial vibrations of the luminometer

Tilt (rotation around y-axis) of the luminometer

11

Metrology

- Metrology for the inner aperture depends on:
 - What is a counting volume: full acceptance, FV?
 - Way of counting (LEP-style, full FV)?

Asymmetric counting (Δr=1 mm at one side) compensates for smaller variations ~ 20 μm (of the counting volume) at the other Symmetrical counting requires 1 μm precision at

- Symmetrical counting requires ~ 1 μ m precision at the Z-pole
- Asymmetric counting only applicable with luminometer on the s-axis

Inner aperture of the counting (FV) volume

Outer aperture of the counting (FV) volume

October 2024

ΔE - asymmetry (bias) in beam energies

 $\beta_z = 2\Delta E/\sqrt{s}$

14

Radial displacements of the IP

Metrology

■ Axial displacement of the IP ⇒ beam synchronization

Axial displacements of the IP

parameter		Z-pole	$250~{ m GeV}$	500 GeV	1 TeV
$\Delta r_{in} \; (\mu \mathrm{m})$		20	200	200	200
$\Delta r_{out} \ (\mu \mathrm{m})$		60	600	600	550
$\sigma_r \ (\mathrm{mm})$		0.3	0.5	0.5	0.5
$\Delta l \ (\mathrm{mm})$		0.2	2.5	2.5	2.5
$\sigma_{x_{IP}} (\mathrm{mm})$		0.3	0.6	0.6	0.6
$\sigma_{z_{IP}} (\mathrm{mm})$		5	10	10	10
tilt (mrad)		14	35	35	35
$\Delta x_{IP} \ (\mathrm{mm})$		0.3	0.6 0.6		0.6
$\Delta z_{IP} \ (\mathrm{mm})$		4	8 8		8
$\Delta \tau ~(\mathrm{ps})$		13	27	27 27	
$\sigma_{E_{BS}}$ (MeV)		110	500	1000	2000
$\Delta E \; ({\rm MeV})$		5	125 250		500
ΔĹ/Ĺ	< 3.	.3 · 10 ⁻⁴		< 3.3 · 10 ⁻³	

- The major challenges only at the Z-pole
- Inner aperture of the luminometer relaxed with the asymmetric counting
- Position reconstruction in the first plane (300 µm) slightly below prototyped performance (440 µm); Can be resolved with a tracker plane in front of the luminometer
- Beam energy spread should be kept ≤ 0.2%
- Asymmetric bias in beam energies (~ 5 MeV)

Δ(√s) for the cross-section calculation (~ 5 · 10⁻⁴)
 Theoretical uncertainty for the revised LEP analyses 3.7 ·10⁻⁴ [Physics Letters B 803 (2020) 135319]

October 2024

3rd ECFA WS Overflow

- ILC/ILD has a past of extensive simulation studies on integrated luminosity measurement by the FCAL Collaboration
- FCAL Collaboration has demonstrated in prototype a feasibility of the compact calorimetry for the very forward region of an e⁺e⁻ collider
- Completed with the metrology study at ILC energies aiming to derive precision limits on individual parameters, not on the integrated luminosity itself
- Input to the ECFA study on Higgs / Top / EW factories prepared, topical paper under ILD review

BACKUP

Complementing the existing results

Source of uncertainty	$\Delta L/L$ (500 GeV)	$\Delta L/L$ (1 TeV)	Com	ment
Bhabha cross-section σ_B	$5.4 \cdot 10^{-4}$	$5.4 \cdot 10^{-4}$	If needed, can be resolved with Si tracker plane	
Polar angle resolution σ_{θ}	$1.6 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$		
Bias of polar angle $\Delta \theta$	$1.6 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$		
IP lateral position uncertainty	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	Quantified to 200 μm	
Energy resolution a_{res}	$1.0 \cdot 10^{-4}$	$1.0 \cdot 10^{-4}$		
Energy scale	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	Unchanged	
Beam polarization	$1.9 \cdot 10^{-4}$	$1.9 \cdot 10^{-4}$		
Physics background B/S	$2.2 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$		
Beamstrahlung + ISR ¹	$-1.1 \cdot 10^{-3}$	$-0.7 \cdot 10^{-3}$		
Beamstrahlung + ISR^2	$0.4 \cdot 10^{-3}$	$0.7 \cdot 10^{-3}$		
EMD^1	$-2.4 \cdot 10^{-3}$	$-1.1 \cdot 10^{-3}$		
EMD ²	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	(< $3.3 \cdot 10^{-3}$ from metrology)	
$(\Delta L/L)^1$	$4.3 \cdot 10^{-3}$	$2.3 \cdot 10^{-3}$	5.4 ·10 ⁻³	4.0 ·10 ⁻³
$(\Delta L/L)^2$	$2.6 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	4.2 ·10 ⁻³	3.7 ·10 ⁻³

[FCAL, 2010 JINST 5 P12002] and [IBJ et al., 2013 JINST 8 P08012]

ILC beam parameters

Machine	ILC			
mode	Z-pole*	Higgs	500 GeV	1 TeV
Half crossing angle at IP (mrad)	7	7	7	7
Beam energy (GeV)	45	125	250	500
Bunch population (10 ¹¹)	0.2	0.2	0.2	1.74
Bunch length (mm)	0.3	0.3	0.3	0.225
Beam size at IP σ_x / σ_y (µm/nm)	1.35/11.6	0.729/0.7	0.474/5.9	0.335/2.7
Energy spread (natural) (%)	0.42	0.19	0.124	0.085
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	0.23	0.75	3.6	4.9

