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INTRODUCTION

QCD

q q

The hadronic vacuum polarization (HVP)
function Π(q2) plays a central role in var-
ious issues of QCD and Standard Model.
In particular, the theoretical description
of some strong interaction processes and hadronic contributions to elec-
troweak observables is inherently based on the HVP function Π(q2):

• electron–positron annihilation into hadrons
• inclusive τ lepton hadronic decay
• muon anomalous magnetic moment
• running of the electromagnetic coupling

The relevant energy scales span from IR to UV domain.
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GENERAL DISPERSION RELATIONS
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Cross–section of e+e−→hadrons reads

σ = 4π2 2α
2

s3
Lµν∆µν,

where s = q2 = (p1 + p2)2 > 0, [timelike]

Lµν =
1

2

[
qµqν − gµνq

2 − (p1 − p2)µ (p1 − p2)ν
]
,

∆µν = (2π)4
∑
Γ

δ (p1 + p2 − pΓ)
〈
0
��Jµ (−q )��Γ〉〈Γ��Jν (q )��0〉,

and Jµ =
∑

f Qf : q̄ γµ q : is the electromagnetic quark current.

Kinematic restriction: the hadronic tensor ∆µν (q2) assumes non–zero values
only for q2 ≥ 4m2

π = m2, since otherwise no hadron state Γ could be excited
■ Feynman (1972); Adler (1974).
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The hadronic tensor can be represented as ∆µν = 2 ImΠµν,

Πµν (q2) = i

∫
e i qx

〈
0
��T {

Jµ (x ) Jν (0)
}��0〉 d 4x = i

(
qµqν − gµνq

2)Π(q2)
12π2

.

Kinematic restriction: Π(q2) has the only cut s = q2 ≥ m2 [timelike]

r

0
22 qq

C

 2m0

Im 

Re 

 

Dispersion relation for Π(q2):

∆Π(q2, q2
0) =

1

2πi
(q2 − q2

0)
∮
C

Π(ξ)
(ξ − q2) (ξ − q2

0)
dξ

= (q2 − q2
0)

∫ ∞

m2

R (s)
(s − q2) (s − q2

0)
ds,

where ∆Π(q2, q2
0) = Π(q2) − Π(q2

0) and R (s) denotes the measurable ratio of
two cross–sections

R (s) = 1

2πi
lim
ε→0+

[
Π(s + i ε) − Π(s − i ε)

]
=
σ (e+e− → hadrons; s)
σ (e+e− → µ+µ−; s) .

Kinematic restriction: R (s) = 0 for s = q2 < m2.
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For practical purposes it is convenient to employ the Adler function

D (Q 2)=−d Π(−Q 2)
d lnQ 2

, D (Q 2)=Q 2

∫ ∞

m2

R (s)
(s + Q 2)2

ds, Q 2=−q2 > 0 [spacelike]

■ Adler (1974); De Rujula, Georgi (1976); Bjorken (1989).

The Adler function plays a valuable role for the congruous analysis of space-
like/timelike data: the dispersion relation provides a link between experi-
mentally measurable and theoretically computable quantities.

r

s-i

s+i

2m0

Im 

Re 

 

The inverse relations between the functions on
hand read

R (s) = 1

2πi
lim
ε→0+

∫ s−i ε

s+i ε
D (−ζ) dζ

ζ

■Radyushkin (1982); Krasnikov, Pivovarov (1982).

∆Π(−Q 2, −Q 2
0) = −

∫ Q 2

Q 2
0

D (ξ) dξ
ξ

■ Pennington, Ross (1981); Pivovarov (1992).

The massless limit m = 0 is assumed hereinafter.
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QCD PERTURBATIVE PREDICTIONS

STRONG RUNNING COUPLING

The QCD running coupling αs(µ2) = g 2(µ2)/(4π) satisfies the RG equation
∂as(µ2)
∂ ln µ2

= β (as), β (ℓ) (as
)
=−

ℓ−1∑
i=0

Bi

[
a
(ℓ)
s (µ2)

] i+2
, Bi =

βi

β i+1
0

,

where µ2 > 0, as(µ2) = αs(µ2)β0/(4π) is the so–called “QCD couplant”,
β0 = 11 − 2nf/3, B0 = 1, β1 = 102 − 38nf/3, B1 = β1/β 2

0 , etc.

Perturbative coefficients βi are available up to the 5–loop level (i = 0...4):
■ Baikov, Chetyrkin, Kuhn, Phys. Rev. Lett. 118, 082002 (2017);

Herzog, Ruijl, Ueda, Vermaseren, Vogt, JHEP02, 090 (2017);
Luthe, Maier, Marquard, Schroder, JHEP10, 166 (2017);
Chetyrkin, Falcioni, Herzog, Vermaseren, JHEP10, 179 (2017).

In what follows for the higher–order scheme–dependent perturbative coef-
ficients the MS–scheme is assumed.
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The perturbative QCD running cou-
pling at the ℓ–loop level:

α
(ℓ)
s (Q 2)=4π

β0

ℓ∑
n=1

n−1∑
m=0

bmn
lnm (ln z )
lnn z

,

where z = Q 2/Λ2 > 0, b01 = 1, b02 = 0,
b12 = −B1, etc.

The one–loop expression reads

α
(1)
s (Q 2)=4π

β0
a
(1)
s (Q 2), a

(1)
s (Q 2)= 1

ln z
.

The one–loop perturbative QCD running coupling suffers from the infrared
unphysical singularity, namely, the ghost pole, and the inclusion of the
higher–loop corrections does not resolve this issue.
■ Prosperi, Raciti, Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007);

Deur, Brodsky, de Teramond, Prog. Part. Nucl. Phys. 90, 1 (2016).
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HADRONIC VACUUM POLARIZATION FUNCTION

q q

ℓ =0

q q

ℓ =1

q q

Perturbative hadronic vacuum polarization function:

Π(ℓ) (q2, µ2, as
)
=

ℓ∑
j=0

[
a
(ℓ)
s (µ2)

] j j+1∑
k=0

Πj ,k lnk
(
µ2

−q2

)
,

where q2 < 0, µ2 > 0, as(µ2) = αs(µ2)β0/(4π), and the prefactor Nc
∑nf

f =1Q
2
f is

omitted throughout. At the one–loop level (ℓ = 1) it reads

Π(1) (q2, µ2, as
)
=
5

3
− ln

(
−q2

µ2

)
+
α
(1)
s (µ2)
π

[
55

12
− 4ζ (3) − ln

(
−q2

µ2

)]
, q2 → −∞.

The function Π
(
q2, µ2, as

)
satisfies the inhomogeneous RG equation[

∂

∂ ln µ2
+
∂as(µ2)
∂ ln µ2

∂

∂as

]
Π
(
q2, µ2, as

)
=γ

(
as

)
, γ (ℓ)

(
as

)
=

ℓ∑
j=0

γj

[
a
(ℓ)
s (µ2)

] j
.

which binds together the higher–order coefficients Πj ,k and γj . At the first
few orders the corresponding RG relations are given in, e.g.,
■ Baikov, Chetyrkin, Kuhn, Rittinger (2009), (2012); Nesterenko (2019), (2020).
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ADLER FUNCTION

Perturbative expression for the Adler function takes the form

D (ℓ) (Q 2, µ2, as
)
=

ℓ∑
j=0

[
a
(ℓ)
s (µ2)

] j j+1∑
k=0

kΠj ,k lnk−1
(
µ2

Q 2

)
, Q 2 = −q2 → ∞.

The Adler function satisfies the homogeneous RG equation[
∂

∂ ln µ2
+
∂as(µ2)
∂ ln µ2

∂

∂as

]
D

(
Q 2, µ2, as

)
= 0,

which, similarly to the previous case, enables one to express the higher–
order perturbative coefficients Πj ,k (j ≥ 2; k = 2, . . . , j + 1) in terms of the
lower–order ones Πi ,1 (i = 1, . . . , j − 1). For example, at the first few orders
such RG relations read

Π2,2 =
1

2
Π1,1, Π3,2 =

1

2
Π1,1B1 + Π2,1, Π3,3 =

1

3
Π1,1

■ Beneke, Jamin (2008); Nesterenko (2019), (2020).
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Explicit form of the RG relations for the higher–order coefficients Πj ,k is ob-
tained at an arbitrary loop level in a compact recurrent form:

Πj ,2 =
1

2

j−1∑
i=1

i B j−i−1Πi ,1 (j ≥2), Πj , j+1 = 0 (j ≥1), Bn=
1

4

n∑
i=0

Bi Bn−i ,

Πj ,k =
1

Tk−1

j−2∑
i=k−2

i (i + j )Bj−i−2Πi ,k−2 (j ≥k , k ≥3), Tn =
1

2
n (n + 1)

■ Nesterenko, J. Phys. G47, 105001 (2020).

The higher–order coefficients Πj ,k can also be expressed in terms of the co-
efficients Πi ,0 and γi . For this purpose the obtained results should be sup-
plemented by the relations

Π0,1 = γ0, Π1,1 = γ1, Πj ,1 = γj +
j−1∑
k=1

k Πk ,0 B j−k−1 (j ≥2), Bi =
βi

β i+1
0

■ Nesterenko, J. Phys. G46, 115006 (2019).
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The obtained RG relations for the higher–order coefficients Πj ,k can also be
represented in the unfolded explicit form:

Πj ,2k+1 =
2k

(2k + 1)!

j−2∑
i1=2(k−1)+1

i1−2∑
i2=2(k−2)+1

. . .

in−1−2∑
in=2(k−n)+1

. . .

ik−1−2∑
ik=1︸                                     ︷︷                                     ︸

(k − 1) sums

(j + i1)i1×

× (i1 + i2)i2 × . . . × (in−1 + in)in × . . . × (ik−1 + ik )ik︸                                                              ︷︷                                                              ︸
(k − 1) products

×

×Bj−i1−2Bi1−i2−2 . . .Bin−1−in−2 . . .Bik−1−ik−2︸                                       ︷︷                                       ︸
(k − 1) terms

Πik ,1, j ≥ (2k + 1), k ≥ 1,

Πj ,2k =
2k−1

(2k )!

j−2∑
i1=2(k−1)

i1−2∑
i2=2(k−2)

. . .

in−1−2∑
in=2(k−n)

. . .

ik−2−2∑
ik−1=2︸                               ︷︷                               ︸

(k − 2) sums

ik−1−1∑
ik=1

(j + i1)i1×

× (i1 + i2)i2 × . . . × (in−1 + in)in × . . . × (ik−2 + ik−1)ik−1︸                                                                   ︷︷                                                                   ︸
(k − 2) products

×ik×

×Bj−i1−2Bi1−i2−2 . . .Bin−1−in−2 . . .Bik−2−ik−1−2︸                                         ︷︷                                         ︸
(k − 2) terms

Bik−1−ik−1Πik ,1, j ≥ 2k , k ≥ 2

■ Nesterenko, J. Phys. G47, 105001 (2020).
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RG SUMMATION IN THE SPACELIKE DOMAIN

For a general choice of renormalization scale µ2 in the spacelike domain all
the coefficients Πj ,k contribute to the resulting expression for the Adler func-
tion, while the native choice µ2 = Q 2 casts D (ℓ) (Q 2, µ2, as

)
to (Π0,1 = 1)

D (ℓ) (Q 2) =
ℓ∑

j=0

Πj ,1

[
a
(ℓ)
s (Q 2)

] j
=1 + d (ℓ) (Q 2), d (ℓ) (Q 2) =

ℓ∑
j=1

dj

[
a
(ℓ)
s (Q 2)

] j
.

The coefficients dj = Πj ,1 are known up to the 4–loop level (j = 1...4):
■ Baikov, Chetyrkin, Kuhn, Phys. Rev. Lett. 101, 012002 (2008);

Baikov, Chetyrkin, Kuhn, Phys. Rev. Lett. 104, 132004 (2010);
Baikov, Chetyrkin, Kuhn, Rittinger, Phys. Lett. B714, 62 (2012)

whereas the numerical estimations of d5 are also available, see, e.g.,
■ Kataev, Starshenko, Mod. Phys. Lett. A10, 235 (1995).

The one–loop expression for the Adler function reads

D (1) (Q 2)=1+d (1) (Q 2), d (1) (Q 2)=d1a (1)s (Q 2), d1=
4

β0
, a

(1)
s (Q 2)= 1

ln(Q 2/Λ2)
.
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In the expression for the hadronic vacuum polarization function Π
(
q2, µ2, as

)
the dependence on the renormalization scale µ2 can be eliminated in the
following way:

Π
(
q2, µ2, as

)
▶

▲[
−d Π(−Q 2)

d lnQ 2
= D (Q 2)

]
D

(
Q 2, µ2, as

)proper RG summation
in spacelike domain

▶
µ2 = Q 2

D (Q 2) ▶
▲[

−
∫ Q 2

Q 2
0

D (ξ) dξ
ξ

= ∆Π(−Q 2, −Q 2
0)

]
∆Π(−Q 2,−Q 2

0)

The expression for ∆Π(ℓ) (−Q 2,−Q 2
0) at the one–loop level (ℓ = 1):

∆Π(1) (−Q 2,−Q 2
0) = − ln

(
Q 2

Q 2
0

)
− d1 ln

[
a
(1)
s (Q 2

0)

a
(1)
s (Q 2)

]
, a

(1)
s (Q 2)= 1

ln z
, z =

Q 2

Λ2

■ Moorhouse, Pennington, Ross, Nucl. Phys. B124, 285 (1977);
Pennington, Ross, Phys. Lett. B102, 167 (1981);
Pennington, Roberts, Ross, Nucl. Phys. B242, 69 (1984);
Pivovarov, Nuovo Cim. A105, 813 (1992).
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The explicit expression for the hadronic vacuum polarization function
∆Π(ℓ) (−Q 2,−Q 2

0) is obtained at an arbitrary loop level:

∆Π(ℓ) (−Q 2,−Q 2
0) = − ln

(
Q 2

Q 2
0

)
+

ℓ∑
j=1

dj

[
p
(ℓ)
j

(Q 2) − p
(ℓ)
j

(Q 2
0)

]
,

p
(ℓ)
j

(Q 2)=
ℓ∑

n1=1

. . .

ℓ∑
n j=1

n1−1∑
m1=0

. . .

n j−1∑
m j=0

(
j∏

i=1

bmi
n i

)
J

(
Q 2,

j∑
i=1

n i ,

j∑
i=1

mi

)
,

J (Q 2, n,m) =


−ln

m+1(ln z )
m + 1

, if n = 1,

m∑
k=0

m!
k !

(n − 1)k−m−1 ln
k (ln z )
lnn−1 z

, if n ≥ 2,

where z = Q 2/Λ2, dj = Πj ,1, and bmn denotes the combination of the β function
perturbative expansion coefficients
■ Nesterenko, J. Phys. G46, 115006 (2019).
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R–RATIO OF e+e− ANNIHILATION INTO HADRONS

R–RATIO (“METHOD I”)

Π
(
q2, µ2, as

)
▶

▲[
−d Π(−Q 2)

d lnQ 2
= D (Q 2)

]
D

(
Q 2, µ2, as

)proper RG summation
in spacelike domain

▶
µ2 = Q 2

D (Q 2) ▶
▲[

1

2πi
lim
ε→0+

s−i ε∫
s+i ε

D (−ζ) dζ
ζ

= R (s)
]

R (s)

 

A

s-i

s+i

c

0

Im 

Re 

 

This method eventually leads to

R (ℓ) (s) = 1 + r (ℓ) (s), r (ℓ) (s) =
∞∫

s

ρ (ℓ) (σ) dσ
σ
,

where the spectral function is

ρ (ℓ) (σ) = 1

2πi
lim
ε→0+

[
d (ℓ) (−σ − i ε) − d (ℓ) (−σ + i ε)

]
.
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At the one–loop level the calculation of R (1) (s) is quite straightforward.

Strong correction to the Adler function reads

d (1) (Q 2) = d1a
(1)
s (Q 2), d1 =

4

β0
, a

(1)
s (Q 2) = 1

ln z
, z =

Q 2

Λ2
.

One–loop spectral function acquires the form

ρ (1) (σ) = d1ρ̄
(1)
1 (σ), ρ̄

(1)
1 (σ) = 1

y 2 + π2
, y = ln

(
σ

Λ2

)
.

Resulting expression for the R–ratio at the one–loop level:

R (1) (s)=1+r (1) (s), r (1) (s)=d1A(1)
tl,1(s), A

(1)
tl,1(s)=

1

2
− 1

π
arctan

(
lnw
π

)
, w =

s

Λ2
.

Expression for A(1)
tl,1(s) first appeared in: ■ Schrempp, Schrempp, Z. Phys. C6, 7 (1980).

All basic ideas were given in: ■ Radyushkin, report JINR E2–82–159 (1982), hep-ph/9907228.

The function A
(1)
tl,1(s) was also reported in:

■ Pivovarov, Nuovo Cim. A105, 813 (1992); Jones, Solovtsov, Phys. Lett. B349, 519 (1995).

A.V.Nesterenko Third ECFA workshop on e+e− Higgs/Top/EW factories (virtual session, 2024) 15/37



At the ℓ–loop level the function R (ℓ) (s) can be represented as

R (ℓ) (s) = 1 + r (ℓ) (s), r (ℓ) (s) =
∫ ∞

s
ρ (ℓ) (σ)dσ

σ
.

For the illustrative purposes it is convenient to cast r (ℓ) (s) into

r (ℓ) (s) =
ℓ∑

j=1

dj

∫ ∞

s
ρ̄
(ℓ)
j

(σ)dσ
σ

=
ℓ∑

j=1

dj A
(ℓ)
tl, j(s)

■ Milton, Shirkov, Solovtsov (1997), (2007); Howe, Brooks, Maxwell (2002), (2004), (2006).

The perturbative expression for the ℓ–loop spectral function reads

ρ (ℓ) (σ)=
ℓ∑

j=1

dj ρ̄
(ℓ)
j

(σ), ρ̄
(ℓ)
j

(σ)= 1

2πi
lim
ε→0+

{[
a
(ℓ)
s (−σ − i ε)

] j
−

[
a
(ℓ)
s (−σ + i ε)

] j }
.

At the first few loop levels the explicit form of the spectral function ρ (ℓ) (σ)
can be calculated directly:
■ Nesterenko (2003); Baldicchi, Nesterenko, Prosperi, Simolo (2008); Nesterenko, Simolo (2010).

At the higher loop levels the function ρ (ℓ) (σ) becomes rather cumbrous.
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Explicit expression for ρ (ℓ) (σ) is obtained at an arbitrary loop level:

ρ (ℓ) (σ) = 1

2πi
lim
ε→0+

[
d (ℓ) (−σ − i ε) − d (ℓ) (−σ + i ε)

]
=

ℓ∑
j=1

dj ρ̄
(ℓ)
j

(σ) =

=
ℓ∑

j=1

dj

K (j )∑
k=0

(
j

2k + 1

)
(−1)k π2k

[
ℓ∑

n=1

n−1∑
m=0

bmn umn (σ)
] j−2k−1 [

ℓ∑
n=1

n−1∑
m=0

bmn vm
n (σ)

]2k+1
,

that makes the (numerical) calculation of the R–ratio at the higher–loop lev-
els easily accessible ■ Nesterenko, Eur. Phys. J. C77, 844 (2017).

In this equation ℓ is the loop level, dj = Πj ,1,

umn (σ) =

u0n (σ), if m = 0,

u0n (σ)um0 (σ) − π2v 0
n (σ)vm

0 (σ), if m ≥ 1,

vm
n (σ) =


v 0
n (σ), if m = 0,

v 0
n (σ)um0 (σ) + u0n (σ)vm

0 (σ), if m ≥ 1,

A.V.Nesterenko Third ECFA workshop on e+e− Higgs/Top/EW factories (virtual session, 2024) 17/37



vm
0 (σ) =

K (m)∑
k=0

(
m

2k + 1

)
(−1)k+1π2k

[
L1(y )

]m−2k−1 [
L2(y )

]2k+1
,

um0 (σ) =
K (m+1)∑
k=0

(
m

2k

)
(−1)kπ2k

[
L1(y )

]m−2k [
L2(y )

]2k
,

v 0
n (σ) =

1

(y 2 + π2)n
K (n)∑
k=0

(
n

2k + 1

)
(−1)kπ2k y n−2k−1, L1(y ) = ln

√
y 2 + π2,

u0n (σ) =
1

(y 2 + π2)n
K (n+1)∑
k=0

(
n

2k

)
(−1)kπ2k y n−2k, L2(y ) =

1

2
− 1

π
arctan

(
y

π

)
,

K (n) = n − 2

2
+ n mod 2

2
,

(
n

m

)
=

n !
m! (n −m)!, y = ln

(
σ

Λ2

)
,

and Λ is the QCD scale parameter ■ Nesterenko, Eur. Phys. J. C77, 844 (2017).
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Function ρ
(4)
diff(σ) is scaled by the factor of 10

The spectral function ρ (ℓ) (σ) is remark-
ably stable with respect to the higher–
loop corrections. In particular, the range
of y = ln(σ/Λ2), where the difference be-
tween ρ (ℓ) (σ) and ρ (ℓ+1) (σ) is sizable, is lo-
cated in the vicinity of y = 0 and becomes
smaller at larger ℓ . This fact eventually leads
to an enhanced higher–loop stability of the
resulting expression for the R–ratio at mod-
erate and low energies.

plot A: [ ρ (ℓ) (σ), ℓ = 1 . . . 5 ]

plot B: [ ρ (ℓ)diff(σ), ℓ = 1 . . . 4 ]

ρ
(ℓ)
diff(σ) =

[
1 − ρ (ℓ) (σ)

ρ (ℓ+1) (σ)

]
× 100%

■ Nesterenko, Eur. Phys. J. C77, 844 (2017).
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R–RATIO (“METHOD II”, EQUIVALENT TO “METHOD I”)

Π
(
q2, µ2, as

)
▶

▲[
−d Π(−Q 2)

d lnQ 2
= D (Q 2)

]
D

(
Q 2, µ2, as

)proper RG summation
in spacelike domain

▶
µ2 = Q 2

D (Q 2) ▶
▲[

−
∫ Q 2

Q 2
0

D (ξ) dξ
ξ

= ∆Π(−Q 2, −Q 2
0)

]
∆Π(−Q 2,−Q 2

0) ▶
▲[

1

2πi
lim
ε→0+

[
Π(s + i ε) − Π(s − i ε)

]
= R (s)

]
R (s)

This method proves to be more appealing than the previous one. Specifi-
cally, the derived expression for the hadronic vacuum polarization function
∆Π(ℓ) (−Q 2,−Q 2

0) (see page 13) and the technique developed for the calcula-
tion of the spectral function ρ (ℓ) (σ) (see pages 17 and 18) make it possible to
obtain the explicit expression for the R–ratio, which properly accounts for
all the effects due to continuation of the spacelike perturbative results into
the timelike domain and, being valid at an arbitrary loop level, can easily be
employed in practical applications.
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Explicit expression for R (ℓ) (s) is obtained at an arbitrary loop level:

R (ℓ) (s) = 1 + r (ℓ) (s), r (ℓ) (s) =
∑ℓ

j=1
dj A

(ℓ)
tl, j(s),

A
(ℓ)
tl, j(s) =

ℓ∑
n1=1

. . .

ℓ∑
n j=1

n1−1∑
m1=0

. . .

n j−1∑
m j=0

(
j∏

i=1

bmi
n i

)
T

(
s,

j∑
i=1

n i ,

j∑
i=1

mi

)
,

T (s, n,m) =


−V 1

0 (s), if n = 1 and m = 0,
m∑
k=0

m!
k !

(n − 1)k−m−1V k
n−1(s), if n ≥ 2,

V m
n (s) =



0, if n = 0 and m = 0,

vm
0 (s), if n = 0 and m ≥ 1,

v 0
n (s), if n ≥ 1 and m = 0,

v 0
n (s)um0 (s) + u0n (s)vm

0 (s), if n ≥ 1 and m ≥ 1,

where the functions v 0
n (s), um0 (s), u

0
n (s), vm

0 (s) are defined on page 18
■ Nesterenko, Eur. Phys. J. C77, 844 (2017); J. Phys. G46, 115006 (2019).
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R–RATIO (“METHOD III”, APPROXIMATE TO “METHOD I” AND “METHOD II”)

Π
(
q2, µ2, as

)
▶

▲[
1

2πi
lim
ε→0+

[
Π(s + i ε) − Π(s − i ε)

]
= R (s)

]
R

(
s, µ2, as

)incomplete RG summation
in timelike domain

▶
µ2 = |s |

Rappr(s)

However, the assignment of the renormalization scale µ2 = |s | factually
amounts to an incomplete RG summation in the timelike domain
■ Pennington, Ross (1977), (1981), (1984); Pivovarov (1992).

This method eventually yields

R
(ℓ)
appr(s) = 1 + r

(ℓ)
appr(s), r

(ℓ)
appr(s) =

ℓ∑
j=1

rj

[
a
(ℓ)
s ( |s |)

] j
, rj = dj − δj ,

where

δ1 = 0, δ2 = 0, δj =

K (j )∑
k=1

(−1)k+1π2kΠj ,2k+1, j ≥ 3.
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The coefficients embodying the retained π2–terms in R
(ℓ)
appr(s) read

δ1 = δ2 = 0, δ3 =
π2

3
d1, δ4 =

π2

3

(
5

2
d1B1 + 3d2

)
, δ5 =

π2

3

[
3

2
d1

(
B2
1 + 2B2

)
+ 7d2B1 + 6d3

]
− π4

5
d1,

δ6 =
π2

3

[
7

2
d1 (B1B2 + B3) + 4d2

(
B2
1 + 2B2

)
+ 27

2
d3B1 + 10d4

]
− π4

5

(
77

12
d1B1 + 5d2

)
,

δ7 =
π2

3

[
4d1

(
B1B3 +

1

2
B2
2 + B4

)
+ 9d2

(
B1B2 + B3

)
+ 15

2
d3

(
B2
1 + 2B2

)
+ 22d4B1 + 15d5

]
− π4

5

[
5

6
d1

(
17B2

1 + 12B2

)
+ 57

2
d2B1 + 15d3

]
+ π6

7
d1

■ Bjorken (1989); Kataev, Starshenko (1995); Prosperi, Raciti, Simolo (2007); Nesterenko (2017).

Explicit expression for δj is obtained at an arbitrary loop level:

δj = −
K (j )∑
k=1

(−2π2)k
(2k + 1)!

j−2∑
i1=2(k−1)+1

i1−2∑
i2=2(k−2)+1

. . .

in−1−2∑
in=2(k−n)+1

. . .

ik−1−2∑
ik=1︸                                       ︷︷                                       ︸

(k − 1) sums

(j + i1)i1×

× (i1 + i2)i2 × . . . × (in−1 + in)in × . . . × (ik−1 + ik )ik︸                                                               ︷︷                                                               ︸
(k − 1) products

×

×Bj−i1−2Bi1−i2−2 . . .Bin−1−in−2 . . .Bik−1−ik−2︸                                        ︷︷                                        ︸
(k − 1) terms

dik , dj = Πj ,1, Bn =
1

4

n∑
i=0

Bi Bn−i , j ≥ 3

■ Nesterenko, J. Phys. G47, 105001 (2020).
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NOTES ON THE FOREGOING METHODS I, II, AND III

• The methods I and II are equivalent and yield the same result for R (s)
• Its re–expansion at high energies takes the form

R (ℓ) (s) = 1 +
ℓ∑

j=1

dj

[
a
(ℓ)
s ( |s |)

] j
−

ℓ∑
j=1

dj

∞∑
n=1

(−1)n+1π2n

(2n + 1)!

ℓ−1∑
k1=0

. . .

ℓ−1∑
k2n=0

©­«
2n∏
p=1

Bkp
ª®¬×

×
[
2n−1∏
t=0

(
j + t + k1 + k2 + . . . + k t

)] [
a
(ℓ)
s ( |s |)

] j+2n+k1+k2+...+k2n
,

√
s

Λ
> exp

(π
2

)
≃ 4.81

• The j –th order contribution to R (ℓ) (s) on the l.h.s. of this equation appears
to be re–distributed over the higher–order terms on its r.h.s.

• This expression can provide a rather accurate approximation of the R–ratio
for

√
s > Λ exp(π/2) ≃ 4.81 Λ , but only if the number of retained π2–terms

on its right–hand side is large enough
• Its truncation yields the result of method III, i.e., R (ℓ)

appr(s)
■ Nesterenko, Eur. Phys. J. C77, 844 (2017); J. Phys. G46, 115006 (2019); J. Phys. G47, 105001 (2020).
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π2–TERMS RETAINED IN Rappr(s)

• Rappr(s): is only valid for
√
s > Λ exp(π/2) ≃ 4.81Λ; converges poorly when

√
s approaches Λ exp(π/2); the SL ▶ TL effects are partially accounted for

by coefficients δj ; contains infrared unphysical singularities
• The coefficients δj , which embody the contributions of the retained
π2–terms in Rappr(s), can in no way be regarded as small corrections to
the Adler function perturbative expansion coefficients dj for j ≥ 3

• On the contrary, the values of coefficients δj significantly exceed the values
of respective perturbative coefficients dj , thereby constituting the domi-
nant contribution to the coefficients rj in Rappr(s)

• The values of coefficients δj rapidly increase as the order j increases, that
amplifies the higher–order terms in Rappr(s), makes its loop convergence
worse than that of R (s), and raises resulting uncertainties of αs and Λ
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Adler function perturbative expansion coefficients dj

nf d1 d2 d3 d4 d5 (est.)

0 0.3636 0.2626 0.8772 2.3743 5.40
1 0.3871 0.2803 0.7946 2.1884 4.70
2 0.4138 0.3005 0.7137 2.1466 3.74
3 0.4444 0.3239 0.5593 1.9149 2.52
4 0.4800 0.3513 0.2868 1.3440 1.16
5 0.5217 0.3836 −0.1021 0.6489 0.0256
6 0.5714 0.4225 −0.7831 −0.8952 0.267

[SL] D (ℓ) (Q 2) = 1 +
ℓ∑

j=1

dj

[
a
(ℓ)
s (Q 2)

] j
, a

(ℓ)
s (Q 2) = α

(ℓ)
s (Q 2) β0

4π

▼ [ dispersion relations + re–expansion + truncation ]

[TL] R
(ℓ)
appr(s) = 1 +

ℓ∑
j=1

rj

[
a
(ℓ)
s ( |s |)

] j
, rj = dj − δj ,

√
s

Λ
> exp

(π
2

)
≃ 4.81
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Coefficients δj embodying the contributions of π2–terms retained in R
(ℓ)
appr(s)

nf δ1 δ2 δ3 δ4 δ5 δ6 δ7 (est.)
0 0.0000 0.0000 1.1963 5.1127 20.455 69.081 45.7
1 0.0000 0.0000 1.2735 5.4298 18.880 56.819 7.02
2 0.0000 0.0000 1.3613 5.7583 17.118 48.532 −35.7
3 0.0000 0.0000 1.4622 6.0851 13.519 30.365 −82.5
4 0.0000 0.0000 1.5791 6.3850 6.910 −3.843 −115.7
5 0.0000 0.0000 1.7165 6.6090 −3.187 −45.692 −83.0
6 0.0000 0.0000 1.8799 6.6638 −21.168 −120.010 142.5

[SL] D (ℓ) (Q 2) = 1 +
ℓ∑

j=1

dj

[
a
(ℓ)
s (Q 2)

] j
, a

(ℓ)
s (Q 2) = α

(ℓ)
s (Q 2) β0

4π

▼ [ dispersion relations + re–expansion + truncation ]

[TL] R
(ℓ)
appr(s) = 1 +

ℓ∑
j=1

rj

[
a
(ℓ)
s ( |s |)

] j
, rj = dj − δj ,

√
s

Λ
> exp

(π
2

)
≃ 4.81
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R–ratio perturbative expansion coefficients rj

nf r1 = d1 r2 = d2 r3 = d3 − δ3 r4 = d4 − δ4 r5 = d5 − δ5

0 0.3636 0.2626 −0.3191 −2.7383 −15.1
1 0.3871 0.2803 −0.4788 −3.2413 −14.2
2 0.4138 0.3005 −0.6476 −3.6116 −13.4
3 0.4444 0.3239 −0.9028 −4.1703 −11.0
4 0.4800 0.3513 −1.2923 −5.0409 −5.75
5 0.5217 0.3836 −1.8186 −5.9601 3.21
6 0.5714 0.4225 −2.6630 −7.5590 21.4

[SL] D (ℓ) (Q 2) = 1 +
ℓ∑

j=1

dj

[
a
(ℓ)
s (Q 2)

] j
, a

(ℓ)
s (Q 2) = α

(ℓ)
s (Q 2) β0

4π

▼ [ dispersion relations + re–expansion + truncation ]

[TL] R
(ℓ)
appr(s) = 1 +

ℓ∑
j=1

rj

[
a
(ℓ)
s ( |s |)

] j
, rj = dj − δj ,

√
s

Λ
> exp

(π
2

)
≃ 4.81
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Relative weight of π2–terms in the coefficients rj

nf j = 1 j = 2 j = 3 j = 4 j = 5 (est.)

0 0.00% 0.00% 57.7% 68.3% 79.1%
1 0.00% 0.00% 61.6% 71.3% 80.1%
2 0.00% 0.00% 65.6% 72.8% 82.1%
3 0.00% 0.00% 72.3% 76.1% 84.3%
4 0.00% 0.00% 84.6% 82.6% 85.6%
5 0.00% 0.00% 94.4% 91.1% 99.2%
6 0.00% 0.00% 70.6% 88.2% 98.8%

[SL] D (ℓ) (Q 2) = 1 +
ℓ∑

j=1

dj

[
a
(ℓ)
s (Q 2)

] j
, a

(ℓ)
s (Q 2) = α

(ℓ)
s (Q 2) β0

4π

▼ [ dispersion relations + re–expansion + truncation ]

[TL] R
(ℓ)
appr(s) = 1 +

ℓ∑
j=1

rj

[
a
(ℓ)
s ( |s |)

] j
, rj = dj − δj ,

√
s

Λ
> exp

(π
2

)
≃ 4.81
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EFFECT OF THE π2–TERMS OMITTED IN R
(ℓ)
appr(s)

1 2 3 4 5 6 7 8 9 1 01 . 0 5

1 . 1 0

1 . 1 5

1 . 2 0

 

 

1 - l o o p
2 - l o o p
3 - l o o p
4 - l o o p
5 - l o o p

R (ℓ) (s): solid curves
R

(ℓ)
appr(s): dashed curves

The higher–order terms in
R

(ℓ)
appr(s) appear to be am-

plified, that makes its loop
convergence worse than that
of R (ℓ) (s). In particular, even
at s = M 2

Z at the four–loop
level (ℓ = 4) the 3rd– and 4th–
order terms of R (4)

appr(s) com-
prise 34.2% and 8.1% of its
2nd–order term, whereas the
3rd– and 4th–order terms of
R (4) (s) comprise only 1.8% and 0.8% of its 2nd–order term
■ Nesterenko, Eur. Phys. J. C77, 844 (2017); J. Phys. G46, 115006 (2019).
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 [ the functions are scaled by the factor of 10 ]

Continuation of the two–loop strong
running coupling squared into the
timelike domain:

[SL]
[
a
(2)
s (Q 2)

]2
▶ A

(2)
tl, 2(s) [TL]

Its re–expansion for
√
s >Λ exp(π/2):

A
(2)
tl, 2(s) ≃

[
a
(2)
s ( |s |)

]2
− π2

ln4w
+

+ π2

ln5w
B1

(
4 ln lnw − 7

3

)
+ O

(
1

ln6w

)
.

However, at the two–loop level all π2–terms are truncated in Rappr(s),
that gives a rather large error even at high energies. For example,[
a
(2)
s ( |s |)

]2 ≃ 1.21A(2)
tl, 2(s) at

√
s = 20 Λ, and to securely achieve 10% accuracy

one needs to include all the π2–terms up to ln−7w , w = s/Λ2

■ Nesterenko, Eur. Phys. J. C77, 844 (2017).
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Extraction of αs and Λ from experimental data on R–ratio

loop level ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

R (ℓ) (s) employed (proper RG sum in SL)

α
(ℓ)
s ( |s0 |) 0.3283 0.3168 0.2955 0.2955 0.2924

Λ(ℓ) [MeV] 238 417 336 331 331

R
(ℓ)
appr(s) employed (incomplete RG sum in TL)

ᾱ
(ℓ)
s ( |s0 |) 0.2827 0.2501 0.2655 0.2881 0.3278

Λ̄(ℓ) [MeV] 169 263 269 315 408

R (s0) = 2.18,
√
s0 = 2.0GeV ■BES Collaboration, Phys. Rev. Lett. 88, 101802 (2002).

• 1st and 2nd lines: R (ℓ) (s) employed, mild variation of the results for ℓ > 2

• 3rd and 4th lines: R (ℓ)
appr(s) employed, no sign of loop convergence

■ Nesterenko, J. Phys. G46, 115006 (2019).
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R
(ℓ)
diff(s)=

������ R
(ℓ)
appr(s) − R (ℓ) (s)

R
(ℓ)
appr(s) − R
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appr (s)
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∆α ( |s |) =
�����ᾱ (4)

s ( |s |) − α
(4)
s ( |s |)

ᾱ
(4)
s ( |s |) − ᾱ

(5)
s ( |s |)

�����×100%
α
(ℓ)
s ( |s |): evaluated by making use of R (ℓ) (s)

ᾱ
(ℓ)
s ( |s |): evaluated by making use of R (ℓ)

appr(s)

In the energy range planned for the ILC
experiment the effect of inclusion of the
π2–terms omitted in R

(ℓ)
appr(s) appears to

be either comparable to or even prevail-
ing over the effect of inclusion of the next–
order perturbative correction
■ Nesterenko, Eur. Phys. J. C77, 844 (2017).

In this energy range the effect of inclusion
of the π2–terms ignored in R

(4)
appr(s) on the

resulting value of the strong running cou-
pling is steadily prevailing over the effect of
inclusion of the five–loop perturbative cor-
rection into Rappr(s)
■ Nesterenko, J. Phys. G46, 115006 (2019).
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SUMMARY

 

The calculation of the R–ratio of electron–positron annihilation into
hadrons from the hadronic vacuum polarization function is studied within
various methods.

 

The RG relations for the higher–order hadronic vacuum polarization func-
tion perturbative expansion coefficients Πj ,k are obtained in the folded
recurrent and unfolded explicit forms, that can also be employed as an
independent crosscheck of the perturbative calculations and in the stud-
ies of the renormalization scale setting.

 

The explicit expression for the hadronic vacuum polarization function with
properly eliminated dependence on the renormalization scale is obtained
at an arbitrary loop level.
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The explicit expression for the perturbative spectral function is obtained
at an arbitrary loop level, that substantially facilitates the (numerical) cal-
culation of the R–ratio within the method I.

 

The explicit expression for the R–ratio, which properly accounts for all
the effects due to continuation of the spacelike perturbative results into
the timelike domain, is obtained at an arbitrary loop level within the
method II.

 

It is shown that the methods I and II are equivalent and yield the same
result for the R–ratio [i.e., R (s)], whereas its truncated re–expansion at
high energies is identical to the result of the method III [i.e., Rappr(s)].

 

The explicit expression for the coefficients δj , which embody the contribu-
tions of the π2–terms retained in Rappr(s), is derived at an arbitrary loop
level.

A.V.Nesterenko Third ECFA workshop on e+e− Higgs/Top/EW factories (virtual session, 2024) 35/37



 

It is shown that the j –th order contribution to R (s) is re–distributed over
the higher–order terms of Rappr(s), thereby substantially amplifying them.
Eventually this makes the loop convergence of Rappr(s) worse than that
of R (s) and increases the resulting uncertainty of αs and Λ associated
with the discarded higher–loop perturbative corrections.

 

It is shown that the validity range of Rappr(s) is strictly limited to
√
s > Λ exp(π/2) ≃ 4.81 Λ and it converges poorly for

√
s ∼ Λ exp(π/2).

 

It is shown that the SL ▶ TL effects are only partially accounted for by the
coefficients δj , which embody the contributions of the retained π2–terms
in Rappr(s).

 

It is shown that the higher–order π2–terms omitted in Rappr(s) can pro-
duce a considerable effect on the determination of αs and Λ from the
experimental data on the R–ratio.
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