Heat Transfer Analysis Pixel Luminosity Ring

University of Oslo

Purpose of analysis

• Evaluate design for luminosity detector, which needs sufficient cooling.

SIMULATION MODEL

- The simulations are run in Autodesk CFD software.
- For initial simulations, only a section of the PLR is used. This is the same model that was used to assess and decide optimal tilt angle of 30°.

CO₂ cooling pipe

- Latest simulations are run with constant cooling pipe temperature.
- In case future analysis will include flow:
 - Cooling inlet and outlet have been extended, in order to optimize model for correct flow simulations.

Material

- Values from previous simulations:
 - "Normal" values for facesheets
 - Foam k of 40 W/mK
 - Glue k of 2 W/mK
 - Hybrid k of 0.8 W/mK (Kapton)

Material

Parts	Figure	Assigned material in Autodesk CFD
Detector hybrid		Kapton 0.8 W/mK
Linear triplet modules		Glue 2 W/mK
Linear triplet modules - Detector sensor		Silisium/Silicon
Linear triplet modules - Soldering		Tinn: 66,6 W/mK K/20 = 3,33 W/mK
Face-sheet		7 W/mK
Carbon-foam wedge		Foam 40 W/mK
Backside and active side foam		Foam 40 W/mK
CO ₂ cooling pipe in the Quad ring.	3	Titan 21,9 W/mK

Boundary conditions

Part	Material	Figure	Value
Cooling	CO ₂		Temperature -25°C
Flex	Kapton		770 W/m ²
Sensor	Silisium/ Silicon		3448 W/m ²
Sil End of chip S	Silisium/		Normal operation case: 37500 W/m ²
	Silicon		Failure case: 106 000 W/m ²

Initial conditions

Mesh

Case 2 - Normal operation scenario

Fixed -25°C CO₂ cooling temperature has been used

Case 2 - Normal operation scenario

Fixed -25°C CO₂ cooling temperature has been used

Case 4a – One ASIC open failure mode scenario Fixed 0°C CO₂ cooling temperature has been used

Case 4a – One ASIC open failure mode scenario

Fixed 0°C CO₂ cooling temperature has been used

Temp

TKE TEC

Scala

Convergence plot

Case 4a – One ASIC open failure mode scenario Fixed 0°C CO₂ cooling temperature has been used

Questions for discussion

• Thermal simulation report / documentation from earlier simulations?

Normal operation scenario for the Shunt-LDOs.

One-ASIC-open failure mode scenario for the Shunt-LDOs.

Questions for discussion

- "Normal" values for facesheets?
 - Need to verify what values to use
 - Kxx 90 W/mK , Kyy 180 W/mK and Kzz 1,2 W/mK
 - Ref. AT2-IP-ER-0029

Questions for discussion

- Carbon-foam wedge
 - Same thermal properties as active side foam and backside foam?
 - K=40 W/mK

