# PLR Manufacturing Options

Neal Hartman, LBNL

31 October 2024



# Background

- PLR was originally costed as an extension to the US project
  - This was deemed too costly or undesirable for various reasons
- CERN has potentially taken up the role of coordinating the project, alleviating the US of direct financial responsibility
- However, as the PLR is based on US-supplied underlying components, there is a an intrinsic US contribution
- This attempts to outline the ways in which those components could be supplied, and what impact that would imply on the US-side



## Overview

- PLR Ring is based on a standard Quad Ring
  - Maintains pipe shape
  - Maintains overall dimensions
  - Maintains basic machining
  - Only addition is additional machining (during same setups) and bonding on "Module Wedges"
- PLR Services are based on standard pixel inner system services
  - PPO and Type 1 Services bundle
  - Ring PCBs
  - Ring to PPO flexes
  - Module pigtails
  - With the exception of module pigtails, all parts are standard
- Thermal performance is dependent on several factors
  - Wedge angle, Facesheet-pipe distance, Lateral wedge position (i.e. radius since pipe radius is fixed), RIng thickness
  - We have defined the optimum value for all of these factors, given manufacturing concerns and performance
  - We have confirmed thermal performance in FEA with some reasonable assumptions, but this is an initial design, and would benefit from additional engineering



# PLR Ring Assembly





#### PLR Ring Structure

Module "Wedges" Are the characteristic Element of this design

In all other ways the Ring is a standard R1 Ring





# **Ring Cross Section**





# Exploded Assembly





# Step #1 Make Regular Quad Ring Blanks



LBNL would supply the raw material, outside vendor would create the blank co-cures. (likely vendor Purdue, who is already in possession of the necessary CF pre-preg for IS uses, but foam would need to be supplied).



# Step #2 Machine PLR Features



This step would be done by an outside vendor, potentially using LBNL Tooling (on loan) for holding the ring in the machine. (likely vendor Purdue)

# Step #3 Wedge Fabrication and Machining



This step would be done by the outside vendor, from co-cure to machining. The amount of material is infinitesimal, and Purdue will already possess the required carbon due to other activities. Foam would need to be supplied. (Likely vendor Purdue).



# Assembly – all in one bonding operation



This step would be done by an outside vendor, potentially using LBNL Tooling (on loan) for holding the ring during bonding. (likely vendor Purdue)

#### Services

- PLR Services are based on standard pixel inner system services
  - PPO and Type 1 Services bundle
  - Ring PCBs (R0.5)
  - Ring to PPO flexes
  - Module pigtails
  - With the exception of module pigtails, all parts are standard, though there are some questions
- PPO and Type 1 Services bundle
  - PPO and bundle would be standard, might need something unique for opto-terminations
  - In any case, every bundle in the inner system is unique, so this would be a unique bundle, but probably only in length
- Since 8 modules at 45 degree intervals are being connected to 2x R0.5 rings with connectors at 72 degree intervals, the module pigtails will be unique
  - Current plan is to have Oslo design and build these flexes



#### Services Production

- With the exception of module pigtails, all services require production and dedicated testing, currently being performed by OSU
- There is no sense in splitting the PLR pieces out of this process, since it would require the development of additional testing equipment and protocols in Norway, for a very small number of parts
- In addition, Ring PCBs require loading with components, so this should also remain in the routine US production path
- On the other hand, the pigtails will be entirely *outside* of the US production scope



# Workflow – Option 1



## Workflow – Option 2



# Delivery Scope

| Unit                     | Production<br>(Overall IS w/o PLR) | PLR Prototype<br>/Preproduction | PLR<br>Production | PLR<br>Total | % of Overall<br>Production |
|--------------------------|------------------------------------|---------------------------------|-------------------|--------------|----------------------------|
| Ring Structure           | 58                                 | 2                               | 2                 | 4            | 6%                         |
| Intermediate<br>Ring PCB | 12                                 | 2                               | 4                 | 6            | 33%                        |
| Ring to PP0 Flex         | 208                                | 2                               | 4                 | 6            | 3%                         |
| PPO+Type 1<br>Bundle     | 112                                | 1                               | 2                 | 3            | 3%                         |
| Module pigtails          | 0                                  | 8                               | 16                | 24           | NA                         |
| Modules                  | 96                                 | 8                               | 16                | 24           | 20%                        |



# Summary

- This production plan limits US exposure and scope while still allowing the use of USdeveloped core technologies (critical to the success and minimized cost of the PLR)
- While the US is still responsible for manufacturing multiple PLR components, they are all simply +X additions to existing batches (where X is 2-4 pieces)
- The one exception is in the Type 1 bundle, which must be a custom length, and the module pigtails
  - Type 1 bundle lengths are all unique, so this is not such an onerous addition
  - Module pigtails will be entirely managed by Norway
- All mechanics to be done by Purdue, which is perfectly qualified to do this work. The only delivery from LBNL is material – CFRP and carbon foam. Cost is incremental, no changes in delivery scope for these materials are needed.
- Integration at SLAC could be aided by the presence of international collaborators onsite (Norway, CERN, etc.), though there will still be a limited need for US technician effort
- Loading could potentially be performed by Purdue under Work for Others

