Pixel Luminosity Ring: physics simulation studies

Deion Fellers, Simone Pagan Griso, Eric Torrence

Introduction

- Talk largely from Simone's presentation at the PLR IDR <u>https://indico.cern.ch/event/1020733/</u>
- Main changes since that time has been work by Deion Fellers to get the simulation installed in an official ATLAS release
- PLR Goals:
 - Bunch-by-bunch luminometer (per-bcid)
 - Good statistical precision from mu ~ 1 (vdM) to mu ~ 200
 - Linear (using cluster counting)
 - Relatively stable response over a year

LAWRENCE BERKELEY NATIONAL LABORATORY

Luminosity measurement with PLR

- Measure luminosity counting the number of clusters
- Inclination of modules provides separation from backgrounds
 - \circ **30deg** \rightarrow 4-5 pixels clusters for prompt particles
 - expect background to peak at low cluster size
 - the fine segmentation (25µm) in the radial direction of these modules helps
- Multiple modules provide redundancy and allow to correct effects due to movements of interaction point

Note: Size "Z" here refers to the direction of 25um segmentation (radial) and is misleading. It will be changed in the next version.

Simulation Needs

- We wanted a physics simulation to inform and validate design choices for the following key points
- Performance:
 - Statistical power
 - Linearity
 - Geometry choices
 - Data rates
- Backgrounds
 - Pileup (in-time and out-of-time)
 - Afterglow
 - Background mitigation

Simulation setup

- PLR geometry implemented on top of release 21.9.10
- Starting from ATLAS-P2-ITK-23-00-00
 - Including final number and position of pixel rings and innermost barrel
- No PLR services and support ring
 - expect a minor impact on the results
- For most studies, same digitization settings as used for ITk pixel
 - FE threshold = 600 e^{-1}
 - charge \leftrightarrow ToT "calibration" (non-optimal)
 - consider only [-1,0,+1] BCs
- Standard tracking ($p_{T} > 900/400 \text{ MeV}$)
- Pile-up in trains of 72 bunches (25ns), μ =200
- Most sample have an "empty" hard-scattering to emulate a zero-bias

R (mm)

Ring Position

- Thermal performance constrains
 maximum inner radius to 91mm
- Investigated available |z| positions
- Essential to have tracking coverage:
 - Extrapolate tracks to PLR to measure cluster efficiency in-situ
 - Needed to achieve low systematics with respect to time-dependent effects

• Only **|z| = 2250mm** ensures tracking can map the full sensitive area

Aside: PLR cluster composition

- Cluster properties quite stable for most p_{τ} range of truth particles
- Some significant differences at very low $p_{_{T}}$
- Main effect: this p_{τ} range is dominated by secondary particles
 - Different primary/secondary particle composition vs p_T

Aside: tracking for PLR

- P_T spectrum of primary/secondary particles very different
- Useful if we can improve low-p_T (and high d₀) track reconstruction for dedicated PLR cluster efficiency (ε) measurements to probe more secondary
- Many of the experimental effects we want to control are the same for clusters originating by primary and secondary, i.e. cancel in the ratio $\varepsilon_{primary} / \varepsilon_{secondary}$
 - Less sensitive to primary/secondary composition of on-track clusters and all clusters
 - Fraction of primary/secondary particles driven by detector geometry
 LAWRENCE BERKELEY NATIONAL LABORATORY

Linearity with **µ**

- Linearity in simulation to better than 1% with crude analysis
 - Only clusters of size 4-5, no further attempt of background subtractions
 - Error bars only represent statistical uncertainty of the simulated sample
 - Main effect overlapping clusters, will mention masking later

BERKELEY

Backgrounds

- Three main classes of backgrounds
 - Out-of-time pile-up effects
 - Timewalk (low-charge assigned erroneously to the next BCID)
 - Masking (a signal in previous BCIDs still "high" when a new particle arrives)
 - Afterglow (slow-particles un-related to current BCID)
 - Beam-induced backgrounds (beam-halo, beam-gas, etc..)
 - Expected to be very small and no simulation easily available or reliable
- All sources above:
 - Could spoil the linear relationship of #clusters vs μ
 - Are potentially not very well simulated, at least out-of-the-box
 - Are expected to peak at low cluster size
- Cluster size expected to be a very powerful method to reduce them to negligible levels!

Out-of-time pile-up: timewalk

- Only affects hits with small charge
 - Either isolated (no problem) or mostly at the end of the cluster (decreases size)
- Lab tests on chip prototype using 1 ke⁻ FE threshold
- Overdrive = "in-time" "absolute" threshold

REDKELEN

- ATLAS will use the "Diff" FE
- Operating point 4-5 µA / pixel
- Expect tiny time-walk effects
- Not included in simulation
 - Low-priority: we can check the effect of such timewalk is negligible in simulation using these measurements

12

Out-of-time pile-up: masking

- Earlier hit can mask a signal
- Simulation only considers -1,0,+1 BCIDs A signal can last much longer
 - Typical time-over-threshold (ToT) ~ 8*25ns
 - Tweaked digitization to consider up to 14 previous bunch crossings
 If hits in the BC of interest overlap, the hit is assigned to the earlier BC

1000 events	Default	ToT masking				
Bunch crossing	[-1, 0, 1]	[-14,, 0, 1]	ratio	0		
# PLR clusters	864,002	865,378	0.0010	Cluster breaking		
#PLR hits	4,586,635	4,582,042	-0.0019	-0.2% masking		
# PLR clusters with size 4 or 5	591,261	591,129	-0.0005		-0.05% 🔗	
# PLR clusters with size 1	27,717	28,280	0.0191	Cluster breaking		Note: back-of-the envelope effect estimated in the document was < 1%

LAWRENCE BERKELEY NATIONAL LABORATORY

time

Q

 $\boldsymbol{Q}_{_{thr}}$

25ns

125ns

Afterglow

- Due to slow particles that are produced in previous bunch crossings
- Time-dependent G4 simulation (thanks to Sven Menke)
 - same setup used to estimate dose/fluences for ITk (and all ATLAS) 0
- Integrates energy deposit (TID) expected on PLR sensors
 - Keep track of particles types: ~98% neutrons and photons 0
 - 99.9% contribution within 100ns of the BC of interest
- Results in a train-dependent effect
 - At most ~0.5% effect in TID 0

0.998 0.996

0.994

Afterglow - II

- Response in TID not the same as clusters!
 - expected that afterglow gives mostly small (low-ToT) isolated hits
 - they can be reduced by cuts on cluster size and ToT
- Not easy in previous simulation to digitize those particles
- Re-used the modified setup used for masking: -14, ..., 0, 1 BCIDs
 - Note: had to disable noise due to its implementation assumptions

Run 2 Data

- While detector characteristics are different, the current dataset can offer insight on backgrounds and agreement with simulation
- Agreement data/MC in randomly-triggered events within 10% for size==1 (bkg enriched) clusters in the last pixel disk
 - Some subtleties due to slightly different data/MC configuration of FE
- Study a 2018 data run, looking at **afterglow in empty bunches** and comparing rate with filled bunches (randomly triggered)

Studied cluster properties and effect of ToT / size selections

	ToT Cut	ToT Cut + Length > 1	ToT Cut + Length > 2
IBL	7%	1%	0.3%
B-Layer	2%	0.4%	0.2%
Disk 3	.18%	0.4%	1%

Can be reduce to < 0.1 clusters/event/ μ

Run3 studies ongoing

LAWRENCE BERKELEY NATIONAL LABORATORY

ITk Pixel FE chip configuration

- Current simulation quite aggressive in FE threshold settings
 - Can tolerate significant higher threshold with little loss of statistics
 - Indirectly gives some idea of the effects of radiation damage

Discriminator threshold	N_{hit}	N_{clus}	N_{clus} w/ Size _Z = 4 or 5	Average Size $_Z$
600 e ⁻ (2.1 keV)	22.9	4.34	3.00	4.37
1000 e ⁻ (3.6 keV)	21.2	4.34	2.99	4.17
1250 e ⁻ (4.5 keV)	20.4	4.35	2.94	4.06
1500 e ⁻ (5.4 keV)	19.5	4.37	2.81	3.93
1750 e ⁻ (6.3 keV)	18.6	4.44	2.60	3.78
2000 e ⁻ (7.2 keV)	17.7	4.52	2.32	3.51

- Re-tuned existing charge ↔ ToT relationship specifically for PLR
 - Not included in most studies so far (apart from masking)

REPKELEV

Data rates

- Hit occupancy from full simulation: $\sim 7.10^{-4}$ hits/pixel/event for μ =200
- Code used for ITk data rates to take into account chip compression and data encoding (we can reproduce the existing results)

- Translates into a maximum readout rate (assuming max 50% FE link occupancy) of 1.5 (1.1) MHz, if using 4 (3) links/FE
- Larger data rate expected for PLR due to longer cluster size
 - On-chip compression helps even if orientation is non-"standard"

Aside: 25x100 vs 50x50 µm²

• Tested effect of using a square pixel geometry

- Detrimental for signal/background separation
- Slightly less expected bandwidth utilization due to shorter clusters

Proper Simulation Implementation

- The PLR has since been properly added to Athena and ITKLayouts
 - Added PLR to ITk Geometry (<u>ITKLayouts-MR183</u>)
 - Introduced PLR into Athena and produced SiHits (<u>athena-MR46234</u>)
 - Created a PLR_ID class (<u>athena-MR50881</u> and <u>athena-MR51273</u>)
 - Got basic digitization working (<u>athena-MR52324</u> and <u>athena-MR56784</u>)
- Still need to implement PLR specific digitization functions and reconstruction
- Believe the code has been maintained since its implementation in 2021
 - Has not been tested since 2021
 - There have been discussions about dropping PLR support in athena

LAWRENCE BERKELEY NATIONAL LABORATORY

Conclusions

- Simulation setup to study PLR performance
- Several developments and dedicated studies to address questions that are specific to PLR
- Current studies provide already useful information on how the current baseline configuration well fits the needed requirements for an accurate luminosity measurements
- Work to be done
 - Run3 PCC measurements compare to afterglow simulations of existing detector
 - Look at radiation damage simulation for 25x100 3D sensors (although it's not a substitute for relevant testbeam data)
 - Improve digitization (esp. TOT charge relationship)

Don't believe there are any show-stoppers from simulation that this wouldn't work!

Expected Performance

- Simulation predicts 2.8 selected clusters in PLR per pp interaction (per unit μ) or 0.175 clusters per triplet / μ
- Triplet statistics dominated by √N_{clus} while full PLR more dominated by õ (as clusters/µ > 1)
 - Physics correlations also important
- RMS of N_{clus} / N_{clus} (relative lumi error per crossing) scales as A/õ in all cases
- Allows us to predict achievable lumi uncertainties

Beam (and module) position

- Moved beam +1mm in Y
 - A = 1.6 +- 0.4(stat.) %
- Beam can easily be offset by ~1mm
- Movements between or within runs usually well within 100µm
 - A ~ 0.16%
- Once averaging 4 modules in the 4 directions
 - \rightarrow A ~ 0 within stat
- Effect of movement in z gives an much smaller effect

$$A = \frac{N_{Right} - N_{Left}}{N_{Right} + N_{Left}}$$

