technische universitat
dortmund

HS® - Past, present and future

- hy
G R

Especially in HEP, ROOT has been the dominant modeling ecosystem for 2 decades
default format: RooWorkspace
essentially, RooFit is a DSL for statistical modeling
old-school C++: object oriented, inheritance-based (RooAbsPdf, RooAbsReal, ...)
big benefit: pretty feature-complete, highly efficient, serializable
big drawbacks: not purely descriptive, serialization to exclusive binary format
Recently, some new “contenders” have emerged
pyhf: stacks of histograms in python, serializable to JSON
zfit & juliahep: heavy on analytical modeling, very elegant, but no serialization

Within ATLAS: Endavour to perform apples-to-apples-comparison pyhf vs. RooFit
do the efficiency claims hold up?
can we use it practically also for larger models?

technische universitat
dortmund

RooFit philosophy: Likelihood is a computational graph
variables & parameters are leaves
operations are branching points
the likelihood is the trunk
RooFit philosophy: Everything has a name
variables (parameters) are correlated by name
variables (observables) can be matched to dataset by name
merging (combination) of models easy
drawback: no inherent support for vector-valued parameters (1 name = 1 number)
pyhf paradigm: The model is static
purely descriptive JSON syntax
high emphasis on schema validation
pyhf paradigm: keep it simple
one likelihood and one dataset per file
limited scope: histfactory

technische universitat
dortmund

A Likelihood is a simultaneous function within several orthogonal binned channels

Each channel is a stack of histograms, mapping to one data histogram, all sharing

the same binning

The Pdf in each bin is a poisson estimate

Each histogram in the stack can be subject to a set of modifiers
correlated shape changes [x(1+¢€0)] o l".
uncorrelated shape changes [x0] ’

normalization factors [x0]
additive normalization changes [*(1+£0)]

T T [T T
ATLAS ® Data \ Uncertainty
6000 (5_137ev, 130107 M Hye M Higr]
H->WW*—evuv W Other H t/Wt
5000[-ggF SR mw Wzy
Mis-id [l Other VV(V)

Events /10 GeV

Data / Pred.

Total — Bkg.

m; [GeV]

technische universitat
< dortmund

Purely descriptive language
no for-loops, no order-sensitive statements

Feature complete with respect to ROOT
full support of all binned and unbinned types of functions, pdfs and datasets
support for multiple pdfs & multiple datasets per file
round-trip-capable with ROOT Workspace (retain names, default values, ...)
corollary: no hard distinction between “parameters” (floating variables) and
“observables” (variables contained in the dataset)

Close to pyhf JSON
should be trivially constructible from pyhf JSON

technische universitat
dortmund

Embrace “computation graph” logic
distributions can be composed of distributions or functions
functions can be composed of functions
distributions and functions can depend on variables

Embrace “reference by name”
all objects need a unique name (function name, distribution name, variable name, ...)
allow easy transformation from and to ROOT
for now, no vector-valued parameters (complicated to handle, but not impossible)

Allow “function macros” (“high-level” distribution and function types)
do not restrict to basic operators
allow frameworks to implement relatively complicated distributions / functions
possibility to allow for optimization
allow more compact representation

technische universitat
dortmund

no vector-valued parameters

no stringent handling of “auxiliary measurements” (constraint terms)
no explicit dependency tracking (leads to implicit order requirement)
no real governance: currently, just me doing my best to be nice

do we need a committee? a project lead?
RFCs? release schedule?

no full implementation outside of ROOT
julia draft exists, but not super actively developed
pyhf draft promised, but nothing produced so far

technische universitat
dortmund

