
HS3 - Past, present and future



● Especially in HEP, ROOT has been the dominant modeling ecosystem for 2 decades
○ default format: RooWorkspace
○ essentially, RooFit is a DSL for statistical modeling
○ old-school C++: object oriented, inheritance-based (RooAbsPdf, RooAbsReal, …)
○ big benefit: pretty feature-complete, highly efficient, serializable
○ big drawbacks: not purely descriptive, serialization to exclusive binary format

● Recently, some new “contenders” have emerged
○ pyhf: stacks of histograms in python, serializable to JSON
○ zfit & juliahep: heavy on analytical modeling, very elegant, but no serialization

The Big Picture

Within ATLAS: Endavour to perform apples-to-apples-comparison pyhf vs. RooFit
● do the efficiency claims hold up?
● can we use it practically also for larger models?



● RooFit philosophy: Likelihood is a computational graph
○ variables & parameters are leaves
○ operations are branching points
○ the likelihood is the trunk

● RooFit philosophy: Everything has a name
○ variables (parameters) are correlated by name
○ variables (observables) can be matched to dataset by name
○ merging (combination) of models easy
○ drawback: no inherent support for vector-valued parameters (1 name = 1 number)

● pyhf paradigm: The model is static
○ purely descriptive JSON syntax
○ high emphasis on schema validation

● pyhf paradigm: keep it simple
○ one likelihood and one dataset per file
○ limited scope: histfactory 

Where we came from



● A Likelihood is a simultaneous function within several orthogonal binned channels
● Each channel is a stack of histograms, mapping to one data histogram, all sharing 

the same binning
● The Pdf in each bin is a poisson estimate
● Each histogram in the stack can be subject to a set of modifiers

○ correlated shape changes [⨯(1+εiθ)]
○ uncorrelated shape changes [⨯θi]
○ normalization factors [⨯θ]
○ additive normalization changes [⨯(1+εθ)]

What is HistFactory?



● Purely descriptive language
○ no for-loops, no order-sensitive statements

● Feature complete with respect to ROOT
○ full support of all binned and unbinned types of functions, pdfs and datasets
○ support for multiple pdfs & multiple datasets per file
○ round-trip-capable with ROOT Workspace (retain names, default values, …)
○ corollary: no hard distinction between “parameters” (floating variables) and 

“observables” (variables contained in the dataset)
● Close to pyhf JSON

○ should be trivially constructible from pyhf JSON

Requirements for HS3



● Embrace “computation graph” logic
○ distributions can be composed of distributions or functions
○ functions can be composed of functions
○ distributions and functions can depend on variables

● Embrace “reference by name”
○ all objects need a unique name (function name, distribution name, variable name, …)
○ allow easy transformation from and to ROOT
○ for now, no vector-valued parameters (complicated to handle, but not impossible)

● Allow “function macros” (“high-level” distribution and function types)
○ do not restrict to basic operators 
○ allow frameworks to implement relatively complicated distributions / functions
○ possibility to allow for optimization 
○ allow more compact representation

Design decisions



● no vector-valued parameters
● no stringent handling of “auxiliary measurements” (constraint terms)
● no explicit dependency tracking (leads to implicit order requirement)
● no real governance: currently, just me doing my best to be nice

○ do we need a committee? a project lead?
○ RFCs? release schedule? 

● no full implementation outside of ROOT
○ julia draft exists, but not super actively developed
○ pyhf draft promised, but nothing produced so far

Shortcomings of the current draft


