Evgeny Epelbaum, RUB

"Democratizing Models" Workshop, RUB, 25.-26. Nov 2024

Nuclear Physics: From Models to Theory

"Democracy is not a fragile flower; still it needs cultivating." -Ronald Reagan

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Degrees of freedom

Nuclear force viewed at a high resolution

Degrees of freedom

Chiral EFT: A revolution in nuclear physics

1979: Weinberg, Phenomenological Lagrangians, Physica A96 (1979)

1984: Gasser, Leutwyler, ChPT to one loop, Annals Phys. 158 (1984)

1991: Jenkins, Manohar, Baryon ChPT using a heavy fermion Lagrangian, Phys. Lett. B255 (1991)

1990: Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett. B251 (1990)

- (In principle) model-independent QFT-based approach with a clear relationship to QCD/Standard Model
- Systematically improvable (by going to higher orders in the EFT expansion)
- Quantifiable accuracy (truncation uncertainty)

Chiral symmetry ↔ Nuclear architecture

Chiral symmetry ↔ Nuclear architecture

Two challenges:

 derivation/construction of nuclear interactions

— solution of the quantum mechanical
 A-body problem

The QM A-body problem

2N: Rewrite to the integral Lippmann-Schwinger eq.: $t = V_{2N} + V_{2N}G_0t$ — easy to solve in p-space.

3N: Faddeev equations, e.g. for elastic Nd scattering:

 $T\phi = tP\phi + (1 + tG_0)V_{3N}^{(1)}(1 + P)\phi + tPG_0T\phi + (1 + tG_0)V^{(1)}(1 + P)G_0T\phi$ asymptotic Nd state symmetric under exchange of nucleons 2,3 P₁₂P₂₃ + P₁₃P₂₃

Solved iteratively in partial-waves (for fixed J, $T \sim 10^5 \times 10^5$), few minutes on 1 CPU.

4N: YakubovskySimilaritys Rehosmalizations GroupECA@FZJ to solve for bound state; only 3 groups can do scattering (with large restrictions)

>4N: So far only (mainly) possible for bound states. E.g., the No-Core-Shell-Model:

$$H|\Psi_{i}\rangle = E_{i}|\Psi_{i}\rangle, \quad |\Psi_{i}\rangle = \sum_{n=0}^{\infty} A_{n}^{i}|\Phi_{n}\rangle, \quad |\Phi_{n}\rangle = \underbrace{[a_{\alpha}^{\dagger} \dots a_{\zeta}^{\dagger}]_{n}|0\rangle}_{n = 1,2,\dots,10^{12} \text{ or more}}$$

$$\Rightarrow \text{ sparse matrix } H_{mn} = \langle \Phi_{m}|H|\Phi_{n}\rangle \text{ diagonalization (Lánczos), extrapolation in N_{max}, pre-diagonalization of H (SRG):
$$\int_{n=1}^{\sqrt{2}} \int_{n=0}^{\sqrt{2}} \int_{n$$$$

Other ab-initio methods: NL-EFT, QMC, CC expansion, IM-SRG, Lorentz IT, Green's functions, ...

Ab initio many-body calculations

The main bottleneck in developing nuclear physics into precision and predictive science is the accuracy of the interaction (especially of 3N forces).

Chiral architecture

Chiral architecture

A digital platform to provide off-shell consistent symbolic expressions (highly complex beyond N²LO) for 2N-, 3N- and 4Nforces and currents (electroweak, scalar), along with the documentation and appropriate πN LECs would be a valuable service to the community

The landscape of chiral NN interactions

Different regularizations (cutoff choices)

- fully nonlocal Entem, Machleidt, Nosyk 2017 (Idaho); Ekström et al. 2013-18 (GO): NNLO_{opt}, NNLO_{sat}, NNLO-Δ
- Semi-local EE, Krebs, Meißner 2015; Reinert, EE, Krebs 2018 (LENPIC)
- OCA Gezerlis et al. 2013; Piarulli et al., 2016 (Norfolk models); Saha, Entem, Machleidt, Nosyk 2023
- IOCAI, NONIOCAI + IAttiCe Lee, Elhatisari, EE, Lähde, Meißner, Krebs et al. (<u>Nuclear Lattice EFT)</u>

Highest available EFT order

- N³LO: Norfolk, NLEFT
- N²LO: Gothenburg-Oak Ridge (GO)

our N⁴LO⁺ NN potentials are the only chiral EFT interactions on the market that provide a statistically satisfactory description of NN data below π -production threshold (i.e., qualify as a PWA)

Degrees of freedom in the effective Lagrangian

- $-\pi$, N: LENPIC, Idaho, GO, NLEFT
- $-\pi, N, \Delta$: Norfolk, GO

Strategy in the determination of LECs

- $-\pi N$ from the Roy-Steiner analysis (not fitted), NN LECs from two-nucleon data LENPIC, Idaho, Norfolk, NLEFT
- LECs determined from a global fit to πN , NN, nuclei, EoS GO

PWA of NN data

OPEP + e.m. interactions phenomenology (No systematic errors!)

PWA of NN data using chiral EFT

About 3000 proton-proton + 5000 neutron-proton data below 350 MeV. Selection of mutually consistent data achieved via the 3σ -criterion: Nijmegen '94, Granada '13, Bochum '21 data bases.

Longest-range interaction in all PWAs: $1\gamma + 2\gamma + 1\pi$ (complicated treatment of e.m. interactions beyond Coulomb...)

Shorter-range interactions:

Nijmegen: Phenomenological boundary conditions

Granada: Coarse graining (δ -shells)

BOCHUM: Chiral EFT Reinert, Krebs, EE, EPJA (18); PRL 126 (21)

E _{lab} bin	CD Bonn	Nijm I	Nijm II	Reid 93	Bochum N ⁴ LO ⁺
0-300 MeV	1.042	1.061	1.070	1.078	1.013

Tail-sensitive normality test
 Aldor-Noiman '13

Truncation uncertainty

Idea: Bayesian inference of the size of higher-order contributions from the known low-order ones

$$= X^{\text{LO}} \left(1 + c_2 Q^2 + c_3 Q^3 + \dots + c_k Q^k + c_{k+1} Q^{k+1} + \dots \right)$$

 \Rightarrow compute $p(\delta X^{(k)} | \{c_2, ..., c_k\}, model) \Rightarrow$ truncation error (DoB intervals)

Assumptions (model): Same expansion for *X* as for the Hamiltonian *H*; expansion parameter *Q*; $\forall c_i$ obey the same probability distribution

BUQEYE Software (Python, Jupiter): correlated observables, diagnostics of EFT models, emulators Alternative: Explicit marginalization over higher orders (samples of potentials) s. Heihoff, EE, in progress

Truncation uncertainty

Matching nuclear χEFT to lattice QCD

Matching nuclear χEFT to lattice QCD

Finite volume energy spectra as an efficient interface between lattice-QCD and chiral EFT Lu Meng, EE, JHEP 10 (21); Lu Meng, Baru, EE, Filin, Gasparyan, PRD 109 (24)

- infinite-V extrapolations without Lüscher
- solves the t-channel cut problem
- partial wave mixing included

known function of FV energies

$$\det \left[M_{ln,l'n'}^{(\Gamma,\boldsymbol{P})} - \delta_{ll'} \delta_{nn'} \cot \delta_l \right] = 0$$

Lüscher's quantization condition is not valid below the left-hand cut

Democratizing chiral EFT: A long-term vision

