
Customized eFPGAs with FABulous

dirk.koch@ziti.uni-Heidelberg.de



▪ FPGA CAD Tools

▪ Partial Reconfiguration

▪ Reliability

▪ Applications

▪ eFPGAs

▪ Hardware Security

▪ 16K RISC-V Threads on a single FPGA

Novel Computing Technologies Group at Heidelberg University

2



3

We also work on FPGA Hardware Security (not today)

▪ A hotspot design can burn 

100 mW / CLB (8 LUTs) 

▪ Power-hammering 

potential of an AWS F1 

instance FPGA is >15KW

▪ Chip survived 40 W 

hotspot (…but up to 40% 

aging in 1 week) 

▪ We also design 

Hardware Trojans



4

RISC-V Processor running at 737 MHz (also not today)

▪ Delivers more than 1 RISC-V MIPS per LUT



▪ Configurability is expensive!

▪ FPGAs are slower than ASICs 

▪ FPGAs draw more power than ASICs

▪ Systems still need flexibility

Solution:

▪ Use soft logic only where it is needed

▪ Also: making chips get cheaper

(mask set cost 130nm: 150K$; 28nm: ~1M$)

Why embedded FPGAs 

You think you buy logic,

... but you pay for the routing

Source:

Wikipedia

5



What about customizing your FPGA to your application?

Source: https://en.webfail.com/98841d83a5b 6



▪ Fully integrated 

framework for 

eFPGAs

Uses many projects:

▪ Yosys & ABC

▪ nextpnr

▪ OpenLANE

▪ VPR

▪ OpenRAM

▪ Verilator

The FABulous Framework 

user Verilog

(benchmark)

Yosys and ABC

(synthesis & mapping)

json

(mapped netlist)

nextpnr

(place & route)

FASM

(routed netlist)

BitMan

(bitstream asembly)

user bitfile

fabric description

(layout & wires)
primitive library

FABulous

(synthesis & mapping)

ASIC RTL

& contraints

ASIC backend

(Cadence, OpenLANE)

ASIC

(GDS)

Fab

(TSMC180, Sky130)

ti
m

in
gc
o
s
t,

 p
e
rf

o
rm

a
n
c
e

stats (utilization, routability, etc.)physical

optimi-

sation
fabric architecture optimisation

u
s
e
r 

d
e
s
ig

n
 o

p
ti

m
iz

a
ti

o
n

model
(architect. graph)



▪ Fully integrated open-source FPGA framework with good quality of results

(area & performance)

▪ Entirely open and free, including commercial use 

▪ Supports custom cells (if provided) → some tooling is on the way

▪ Supports partial reconfiguration

▪ Designed for ease of use while providing full control as needed

▪ Versatile

▪ Different flows (OpenLane → Cadance) (Yosys/nextpnr → VPR)

▪ Easy to customize, including the integration of own IP

What is FABulous offering? 

8



▪ 4 x register file, 2 x DSPs,  8 x LUT-tiles (CLB), I/Os left and right,

Let‘s build a small eFPGA: Fabric Definition 

LUT

LUT

LUT

LUT

DSP_bot

DSP_top

DSP

DSP_bot

DSP_top

DSP LUT

LUT

LUT

LUT

CPU

IO

CPU

IO

CPU

IO

CPU

IO

REG

(mem)

REG

(mem)

REG

(mem)

REG

(mem)

IO

Pin

IO

Pin

IO

Pin

IO

Pin

term term term

term term term term

term

9



▪ 4 x register file, 2 x DSPs,  8 x LUT-tiles (CLB), I/Os left and right, 

▪ A fabric is modelled as a spreadsheet (tiles are references to tile descriptors)

Let‘s build a small eFPGA: Fabric Definition 

LUT

LUT

LUT

LUT

DSP_bot

DSP_top

DSP

DSP_bot

DSP_top

DSP LUT

LUT

LUT

LUT

CPU

IO

CPU

IO

CPU

IO

CPU

IO

REG

(mem)

REG

(mem)

REG

(mem)

REG

(mem)

IO

Pin

IO

Pin

IO

Pin

IO

Pin

term term term

term term term term

term

10



▪ Basic tiles have same height, but type-specific width (for logic tiles, DSPs, etc.)

▪ Adjacent tiles can be fused for more complex blocks (see the DSP example) →Supertile

Basic concepts 
L

A

A

AQ

L

B

B

BQ

L

C

C

CQ

L

D

D

DQ

A0

A3

B0

B3

B0

B3

B0

B3

8

16

switch

matrix

LUT

tile

Pad1

I1

Q1

O1

T1

Pad0
I0

Q0

O0

T0

Pad0
I3

Q3

O3

T3

Pad2
I2

Q2

O2

T2

8

8

I/O

tile

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

LUT_N_terminate North_terminate North_terminate

LUT_S_terminate South_terminate South_terminate

W
e
s
t_

te
rm

in
a
te

W
e
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
teL

B
L

C
L

D

L

B
L

C
L

D

LUT column DSP column IO column

A

B

C

Q

OP

'0'

8

8

16

8

8

1

2

4

16

8

16 16

stop

over

NULL tile

switch

matrix

switch

matrix

DSP top

DSP bot

carry

chain

 direct
inter
tile

links

'0'

'open'

switch

matrix

switch

matrix



Let‘s build a small eFPGA: Tile Definition 

Se
Nb

Ne
Sb

WeEb

Po

Ee

Pi

Jump

switch

matrix

prim
itive

Ec

Wc

Nc
Sc

Wb

St
Nt

EtWt

LUT

tile

▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage
12



Let‘s build a small eFPGA: Tile Definition 

Se
Nb

Ne
Sb

WeEb

Po

Ee

Pi

Jump

switch

matrix

prim
itive

Ec

Wc

Nc
Sc

Wb

St
Nt

EtWt

LUT

tile

▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage



FPGA Basics – FPGA Fabric



Sky130 with CLBs, DSPs, 

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel

15

FABulous Chip Gallery



FABulous Chip Gallery

Sky130 with CLBs, DSPs, 

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel

16



▪ Flow runs through without manual 

intervention

▪ 672x LUTs, 7x DSPs, 7x BRAMs

(88% of what we achieved with 

Cadence Innovus)

▪ Process: Skywater 130 (~12mm2)

▪ get it here: 

https://github.com/FPGA-Research/

open_eFPGA_v2 17

Our first (full) open-everything FPGA 



Chip Gallery – Open ReRAM FPGA test chip

Sky130, Google Shuttle

MPW4https://github.com/nguyendao-

uom/rram_testchip

Posible advantages of ReRAM FPGAs

▪ Security (IPs defined by resistive states)

▪ Reliability (ReRAM is radiation hard)

▪ Probably density

▪ Instantaneous on



FABulous Chip Gallery

Dual-Ibex-Crypto-eFPGA

Google Shuttle - MPW-4

(custom instructions,

T-shaped fabric)
https://github.com/nguyendao-uom/ICESOC

▪ connects two operands to the fabric and 

▪ multiplexes results back from different slots

▪ eventually include some dela slots if 

custom instruction is slower than CPU



Implementation

▪ Sliding window approach

▪ Slide a window of size t_reconfiguration over the instruction

▪ Easy method: tab into the operands and multiplex in a result

→may require different number clock cycles to evaluate
20



Implementation



Reconfigurable Instruction Set Extensions

▪ CPU ISAs intend to get bloated 

→ trend to feature-rich instruction sets and acceleration

→ creates a legacy problem

22



▪ Stanford University (TSMC 130 & TSMC 28)

▪ TU Graz (IHP 130 & Sky 130)

https://github.com/mole99/greyhound-ihp

▪ New York University (2x TSMC 28)

▪ University of Bristol (Sky 130)

▪ Berkely (TSMC 130)

▪ Fudan University (TSMC 180)

23

FABulous Users

https://github.com/mole99/greyhound-ihp


▪ Timing model extraction

(for timing-driven Place&Route)

▪ Physical constraints

(bounding boxes and macro placement)

▪ More optimizations

▪ More tapeouts GF22, TSMC 16, IHP 130

▪ Open-everything RISC-V-eFPGA board

▪ RISC-V (Ibex?) + MMU

▪ 1K LUT-4, 8 DSPs, 8 BRAMs,

▪ Debug infrastructure

Next Steps





HeiChips Summer School (Aug. 4-8)

▪ 1 day posters, talks, keynote, hike

▪ 2 days classes (open-source tools)

▪ 2 days Hackathon

→ with ASIC tapeout!



People:

Nguyen Dao Jonas Künstler

Ying Yu Asma Mohsin

Myrtle Shah Marcel Jung 

Bea Healy Gennadiy Knis

King Chung (Kelvin) Timo Braungardt

Gavaskar K Biswajit Kumar Sahoo

Gennadiy Knies Jakob Ternes

Andrew Attwood

Dirk Koch dirk.koch@manchester.ac.uk

See our projects under:

https://github.com/FPGA-Research

Customized eFPGAs with FABulous



Reconfigurable Instruction Set Extensions

The FlexBex (Ibex with eFPGA) approach:

We use the following instruction encoding:

eFPGA[result_select]d[delay] dest, RS1, RS2 // delay: 0…15 cycles 

▪ Register manipulation instruction: dest  RS1  OP RS2

▪ Inline assembly:

FlexBex: A RISC-V with a 

Reconfigurable

Instruction Extension

FPT 2020



FPGA Configuration (as used in FABulous)



The FABulous eFPGA Ecosystem 

▪ FABulous eFPGA generator

▪ ASIC RTL and 

constraints generation

▪Generating models for

nextpnpr/VPR flows

▪ FPGA emulation

▪ Virtex-II, Lattice clones

(patent-free!)

▪ See our FPGA 2021 paper

„FABulous: An Embedded 

FPGA Framework”



FABulous versus OpenFPGA (on Sky130)

▪ FABulous and OpenFPGA have

a Google Shuttle2 submission

▪ ~ same physical impl. problem

▪ OpenFPGA CLBs are 17% bigger

▪ New optimizations gave us further 21.7% in density on the same netlist!

~1200 MUX2



▪ I/Os belong logically to the fabric but are physically routed to the surrounding

▪ Internal wires, buses, etc. are „just“ wires at the border of the fabric

Basic concepts 
L

A

A

AQ

L

B

B

BQ

L

C

C

CQ

L

D

D

DQ

A0

A3

B0

B3

B0

B3

B0

B3

8

16

switch

matrix

LUT

tile

Pad1

I1

Q1

O1

T1

Pad0
I0

Q0

O0

T0

Pad0
I3

Q3

O3

T3

Pad2
I2

Q2

O2

T2

8

8

I/O

tile

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

LUT_N_terminate North_terminate North_terminate

LUT_S_terminate South_terminate South_terminate

W
e
s
t_

te
rm

in
a
te

W
e
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
teL

B
L

C
L

D

L

B
L

C
L

D

LUT column DSP column IO column

A

B

C

Q

OP

'0'

8

8

16

8

8

1

2

4

16

8

16 16

stop

over

NULL tile

switch

matrix

switch

matrix

DSP top

DSP bot

carry

chain

 direct
inter
tile

links

'0'

'open'

switch

matrix

switch

matrix

32



▪ Replace standard cell multiplexers with custom mux-4

Astd-cell – Ac-mux4 x N = (33.8µm2 – 17.5µm2) x 376 = 6,116µm2

Tile-based Design in FABulous 

Observation:

▪ No area improvement

▪ Instead: core utilization went down → Congested tile routing

CLB register_file DSP

Area [um]

standard cell
custom_mux-4:1

0

100

200

300

400

500

600

700



In short 

improvement
expected

actual

work



Optimization: Bitstream Remapping 



▪ We use Google's Operations Research tools to compute the grid points 

(https://github.com/google/or-tools) 

Optimization: Bitstream Remapping 



The FABulous eFPGA Framework – Wrap-up 

▪ Heterogeneous (FPGA) fabric (DSBs, BRAMs, CPUs, custom blocks)

▪Multiple tiles can be combined for integrating more complex blocks

▪ Custom blocks can be instantiated directly in Verilog and are integrated 

in Yosys, VPR/nextpnr CAD tools (Synthesis, Place&Route) (as primitive blocks)

▪ Support for dynamic partial reconfiguration

(some elements of XC6200, like wildcard configuration)

▪ Configuration through shift registers or latches (or custom cells)

▪ Support for custom cell primitives (passtransistor multiplexers)

▪ Good performance / area / power figures (about 1.5x worse than Xilinx)

(could be narrowed down through customization)

▪ Usable by FPGA users (you don‘t have to be an FPGA architect)

→ there are FPGA classics that we have/will clone

▪ ToDo: multiple clock domains, mixed-grained granularity, ...



▪ Look-up tables (LUTs) are basically multiplexers selecting configuration latches

storing a function as a simple truth table

▪ Configuration latches are usually written through the configuration port only

▪ In distributed memory options (LUT is used as a shift register or memory file, 

table is also writeable through the user logic)

FPGA Basics – Logic  



FPGA Configuration

▪ Do not use shift register configuration

▪ High power during configuration (thousands of bits)

▪ Configuration only valid if completely shifted in (transient short-circuits or ring-oscillators)

▪ Cannot do „real“ partial reconfiguration (static routes through reconfigurable regions)

▪ Too expensive (shift registers need flip flops, frame-based configuration can do with latches)



0 1 0 0 00 1

▪ AMD/Intel use multiple levels of one-hot encoded routing with pass-transistors

▪ Multiple activated inputs can cause short-circuit situations

→ this is why you should blank a region before overwriting it with a new module

→ less of a problem for encoded bitstreams (not one-hot encoded)

1 1

1 0

FPGA Basics – Routing (Virtex-II style)  



▪ Replace standard cell multiplexers with custom mux-4

Astd-cell – Ac-mux4 x N = (33.8µm2 – 17.5µm2) x 376 = 6,116µm2

Tile-based Design in FABulous 

Standard cell Custom mux-4

height width area util. area util.

CLB 219µm 219µm 47,961 81.8% 46,225 60.7%

REG 219µm 214µm 46,866 84.1% 46,655 64.3%

DSP 443µm 185µm 81,955 80.9% 81,780 56.7%

Observation:

▪ No area improvement

▪ Instead: core utilization went down

→ Congested tile routing



In short 

improvement
expected

actual

work



▪ The configuration bit cells may induce inferior placement of multiplexers

▪ We can remap configuration bits → requires remapping of the bitstream (trivial)

Optimization: Bitstream Remapping 

c
0
=0

0

1

0

1

c
1
=1M0

M1
c

in
c

out

c
1
=0 0

1
M0

0

1
M1

c
0
=1

c
in

c
out



▪ We use Google's Operations Research tools to compute the grid points 

(https://github.com/google/or-tools) 

Optimization: Bitstream Remapping 



Optimization: Bitstream Remapping 


