Dijet cross-section measurement using the ATLAS experiment

Stanislav Poláček

IPNP seminar October 30, 2024

Stanislav Poláček

Dijet cross-section measurement at ATLAS

October 30, 2024

315

- Two topics connected with ATLAS experiment at CERN
 - Detector operation
 - Time calibration of ATLAS Tile Calorimeter
 - Physics analysis
 - Dijet cross-section measurement using ATLAS

ELE NOR

ATLAS

- Multi-purpose detector at LHC with broad scientific program
- Multiple sub-detectors: Inner Detector, calorimeters, Muon Spectrometer, ...

- Measurement of energy and direction of particles
 - Electromagnetic calorimeters—electrons and photons
 - Hadronic calorimeters—jets and single hadrons
- Two types
 - Liquid Argon (LAr) calorimeter
 - Tile calorimeter (Tilecal)

ヨト・モート

ELE NOR

ATLAS Tile Calorimeter

▲ Ξ ► Ξ Ξ < < < </p>

- Hadronic calorimeter of ATLAS
- Sampling calorimeter
 - Passive medium: steel
 - Active medium: scintillator tiles
- Scintillation light transported by optical fibers to photomultipliers (PMTs)

Tile Calorimeter—Introduction

- Readout cells defined by groupings of optical fibers to the same PMTs
- Typical cell—two PMTs (= two channels)

- Multiple time calibration methods, final method uses jets in *pp* collision data
 - Slight energy dependence of reconstructed time on energy deposited in cell for jets
 - Calibration using specific energy range

Dijet cross-section measurement

1 = 1 = 1 = 1 = 1

- Jet: pp collision \rightarrow partons \rightarrow hadronization \rightarrow collimated hadron shower
- Jet reconstruction
 - Topological jets: energy deposited in calorimeters
 - Particle flow (PFlow) jets: calo. energy + tracks of charged hadrons from Inner Detector

Dijet measurement—Cross-section and observables

- Measurement of production of two jets (PFlow) in 13 TeV *pp* collisions
- Full LHC Run 2 dataset (140 fb⁻¹)
- Motivation: high-x gluon PDF extraction
- Two double-differential cross-sections using

•
$$m_{jj} = \sqrt{(P_1 + P_2)^2}$$

• $y^* = |y_1 - y_2|/2$

- $y_{\text{boost}} = |y_1 + y_2|/2$
- Jet selection
 - $p_{\mathrm{T}} > 75$ GeV, |y| < 3
 - $p_{T,1} + p_{T,2} > 200 \text{ GeV}$

- JHEP **05** (2018) 195
 - 2015 data (3.2 fb⁻¹)
 - 13 TeV pp collisions
 - $d^2\sigma/dm_{\rm jj}dy^*$
 - *m*_{jj} up to 9 TeV
- JHEP 05 (2014) 059
 - 2011 data (4.5 fb⁻¹)
 - 7 TeV pp collisions
 - $d^2\sigma/dm_{
 m jj}dy^*$, $m_{
 m jj}$ up to 5 TeV

- As low as 1 in ${\sim}15{,}000$ jets (using our selection)
- $\bullet\,$ Effective number of events: $\sim 10^{11}$

- Data corrected for detector resolution and efficiency effects using unfolding procedure (IDS method)
- Monte Carlo events
 - 1 Generation of events (Pythia8) \rightarrow Particle (truth) level
 - 2 Propagation of particles through detector and simulated detector response (Geant4)
 - 3 Reconstruction of events \rightarrow Reco. level
- Response matrix (RM)
 - Created using events with corresponding truth and reco. dijets
 - Describes detector response
- Three steps of unfolding: $N_i^{\text{truth}} = \sum_i N_i^{\text{reco}} \cdot \mathcal{P}_j \cdot \mathcal{U}_{ij} / \mathcal{E}_i$
 - 1 Purity correction \mathcal{P}_j
 - 2 Event migrations between bins (unfolding matrix U_{ij} = normalized RM)
 - 3 Efficiency correction \mathcal{E}_i

A ∃ ► 3 | = 4 € ►

- Estimated using data-driven closure test
- Asumption: Data-MC difference on reco. level caused by improper MC modeling on truth level
- Procedure:
 - 1 Purity correction of data
 - 2 Data/MC on reco. level
 - 3 Smooth function fit (5th order polynomial)
 - 4 Fit function used to re-weight MC on the truth level
 - 5 Closure: corresponding reco. MC agrees with Data well

Bias [%] $y_{\text{boost}} < 0.5$ 10 IDS 0 iterations IDS 1 iterations Comparison: 6 **IDS 2 iterations** Re-weighted reco. MC unfolded using **IDS 3 iterations** nominal RM • Re-weighted truth. MC This difference interpreted as unfolding bias Bias decreases with increasing number of **IDS** iterations 2000 8000 4000 6000 10000 m_{ii} [GeV]

Dijet measurement-Statistical uncertainty

- Statistical uncertainty estimated using bootstrap method
 - To account for events contributing with different weights (MC weights, Data prescales) and migration of events during unfolding
- Data contribution
 - 1 Events re-weighted 100 times according to Poisson distribution with mean = 1, creating 100 replicas of the spectrum
 - 2 Unfolding of replicas \rightarrow 100 unfolded spectra
 - 3 Stat. unc. estimate = RMS error
- MC contribution
 - Same, just replicas of response matrix
- Stat. unc. increases with increasing number of IDS iterations

- Number of iterations chosen so that stat. unc. larger than bias
 - Stat. unc.—well-understood method of estimation using bootstrap replicas, clear interpretation
 - With increasing number of iterations bias decreases faster than stat. unc. increases
- Choice:
 - 1 iteration for y^*
 - 2 iterations for y_{boost}

Dijet measurement—Systematic uncertainties and jet calibration

Jet calibration—multiple steps and methods (connected with JES uncertainty)

- Pileup correction
- Absolute calibration
 - MC-based correction of $p_{\rm T}$ and η
- Global sequential calibration
 - MC-based correction of residual dependence on e.g. jet flavor
- Residual in situ calibration
 - Correction of MC–Data difference
 - Various methods of comparing jets to well-calibrated objects
 - Forward to central jets
 - Jet to gamma or \boldsymbol{Z}
 - E/p measurement (π from W decay, ...)

• Many different sources of systematic uncertainty

- Jet energy scale (JES)
- Jet energy resolution (JER)
- Other sources

▲ ∃ ► ∃ =

Dijet measurement—JES systematic uncertainty

- Jet energy scale (JES) uncertainty—1172 components
 - Dominant systematic uncertainty source
- Uncertainty propagated through unfolding
 - Each component—shifted $p_{\rm T}$ and/or η of jets in MC simulation
 - Shifted reconstructed MC spectrum unfolded using nominal RM
 - Compared to the nominal truth spectrum = uncertainty estimate

- Three-step smoothing procedure to minimize effects of statistical fluctuations:
- 1 Statistical uncertainty estimation (bootstrap method)
- 2 Rebinning until significant (2 σ)
- 3 Gaussian kernel smoothing in original fine binning
 - Each bin recalculated as weighted average of all bins
 - Weights according to Gaussian distribution \rightarrow closest bins most important

22 / 27

• Jet energy resolution (JER)-34 components

•
$$\frac{\sigma(p_{\rm T})}{p_{\rm T}} = \frac{N}{p_{\rm T}} \oplus \frac{S}{\sqrt{p_{\rm T}}} \oplus C$$

- *N*—noise term (electronics and pileup noise)
- S—stochastic term (stat. fluct. due to energy sampling)
- C—constant term (response non-uniformity, signal loss in passive material)
- JER measured using various methods, uncertainties propagated through unfolding
- Other sources
 - Luminosity uncertainty (140.07 \pm 1.17 fb⁻¹), flat 0.83% uncertainty in each bin
 - Unfolding bias (after smoothing)
 - More . . .

Dijet measurement—Total systematic uncertainty

- Total systematic and statistical uncertainties of the dijet cross-sections
 - Mostly at level of 5-10%
 - Up to ${\sim}15\text{--}20\%$ in last $m_{\rm jj}$ bins

Dijet cross-section measurement at ATLAS

Dijet measurement—Uncertainty comparison

- Total systematic uncertainty compared to the previous measurement (*JHEP* **05** (2018) 195)
- \bullet Improvement by factor up to ${\sim}3$

25 / 27

Dijet measurement—Cross-sections

• Two double-differential dijet cross-sections

Summary

- Current dijet cross-section measurement improves the results obtained in the previous ATLAS measurements
 - Better statistics (140 fb $^{-1}$ vs 3.2 fb $^{-1}$)
 - $\bullet~\sim 2\times$ finer binning, better energy reach
 - Improved treatment of systematic uncertainties
 - $\bullet\,$ Uncertainty reduced by factor ~ 3 in some bins
 - Additional rapidity variable y_{boost}
 - Better sensitivity to PDFs
 - NNLO theory will be compared with the measurement
 - Previously NLO
- My contribution
 - Evaluation of systematic and statistical uncertainties
 - Study and optimization of unfolding procedure
 - Other dedicated studies
- Analysis currently in internal review process of ATLAS

Backup

Tile Calorimeter—Calorimeters

• $y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$, $\eta = -\ln \tan (\theta/2)$, $\sim 10\lambda_{int}$ (interaction lengths) at $\eta = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 の ()

Dijet measurement—Uncertainty comparison

• Total statistical uncertainty compared to the previous measurement (*JHEP* **05** (2018) 195)

