

Optimizing the quench protection of a 13 T Nb₃Sn common-coil magnet

Emmanuele Ravaioli (CERN)

D. Araujo (PSI), B. Auchmann (PSI), A. Verweij (CERN), M. Wozniak (CERN)

2024.09.06

New common-coil concept by Douglas Araujo at PSI

with acknowledgment to a similar design proposed in LBNL, which did not focus on field quality [S. Gurlay et al., 1995]

SMACC magnet by Douglas Araujo at PSI

SMACC Stress-Managed Asymmetric Common-Coil

No racetrack coils around the pole

Large bending radius for all turns

Congratulations to Douglas! This is a major development for the common-coil technology!

1LPo1G-06 D. Araujo (PSI)

SMACC magnet by Douglas Araujo at PSI

First demonstrator will be built at PSI
✓ 13 T bore field with 10% margin at T=4.2 K
✓ Circular bore with 50 mm diameter
✓ 250 mm intra-beam distance
✓ Utilizing two already-existing Nb₃Sn cables

No flexibility in the choice of conductor grading

Quench protection is much more challenging (one conductor heats up twice more quickly!)

Analyzed quench protection options

<u>ACTIVELY</u>		<u>ACTIVELY</u>					
EXTRACT ENERGY		SPREAD ENERGY					
Energy extraction system		Active heating system					
Energy extraction	Energy extraction	CLIQ					
with constant resistor	with varistor	(Coupling-Loss Induced Quench system)					
	Energy Extraction + CLIQ						

Quench detection based on differential voltage monitoring

Total reaction time $t_{\rm R}$

Quench detection time	+	Discrimination time	+	Triggering time	=	Total reaction time t _R
2.5 ms for a quench in the worst-case turn		5 ms assumption based on experience with similar magnets		3.2 ms for energy extraction mechanical switch	*	11 ms for energy extraction
				0.5 ms for CLIQ unit		8 ms for CLIQ

Of course these values are not general, but they are valid for the test facility where the tests will be performed

Quench protection options

Quench protection with 1 kV energy extraction with constant resistor

Hot-spot temperature as a function of total reaction time

Varistor (EEV) marginally improves quench protection (20-40 K temperature reduction)

Quench protection possible (T_{hot} <350 K) if t_R <14 ms (for EER) or t_R <18 ms (for EEV)

CÉRN)

CLIQ optimization

CLIQ PERFORMANCE CAN BE GREATLY ENHANCED BY SELECTING THE OPTIMUM CONFIGURATION

CLIQ optimization

CLIQ PERFORMANCE CAN BE GREATLY ENHANCED BY SELECTING THE OPTIMUM CONFIGURATION

Quench protection with 50 mF, 300 V CLIQ-C3 system

Energy extraction + CLIQ optimization

Parametric study to identify the combinations of CLIQ configuration, CLIQ charging voltage, and EE voltage rating that satisfy all requirements in terms of hot-spot temperature (T_{hot}<350 K), peak voltage to ground (U_{g,m}<1000 V), and peak CLIQ current (I_{C,m}<5 kA)

Recommendation: CLIQ "Configuration 1", 300 V CLIQ + 1 kV EE Low hot-spot temperature. Redundancy. Easiest to implement CLIQ configuration.

E. Ravaioli – Optimizing the quench protection of a 13 T Nb₃Sn common-coil magnet – ASC 2024 – 2024/09/06

CÉRN)

Currents versus time for the different quench protection options

All options can protect the magnet if the total reaction time is <11 ms

CLIQ charged to low-medium voltage achieves sufficiently low temperature with 4-5 times lower voltage to ground

Energy extraction plus CLIQ achieves the lowest hot-spot temperature overall

Recommendation: CLIQ "Configuration 1", 300 V CLIQ + 1 kV EE

15

Hot-spot temperature as a function of total reaction time

All options can protect the magnet if the total reaction time is <11 ms

CLIQ charged to low-medium voltage achieves sufficiently low temperature with 4-5 times lower voltage to ground

Energy extraction plus CLIQ achieves the lowest hot-spot temperature overall

Recommendation: CLIQ "Configuration 1", 300 V CLIQ + 1 kV EE

16

CÉRN

Conclusion

Quench protection of 13 T common-coil SMACC magnet (PSI)

Five quench protection strategies are analyzed and comparedEnergy extraction with constant resistorEnergy extraction with constant resistor + CLIQEnergy extraction with varistorEnergy extraction with varistor + CLIQCLIQCLIQ

Optimized CLIQ connection configuration, CLIQ voltage, EE voltage rating
 Recommendation: CLIQ "Configuration 1", 300 V CLIQ + 1 kV EE
 →Low hot-spot temperature. Redundancy. Easiest to implement CLIQ config.

All STEAM programs are available free of charge for the community Interested? Visit us \rightarrow <u>https://espace.cern.ch/steam</u> or Contact us \rightarrow <u>steam-team@cern.ch</u>

All simulations presented today were performed with LEDET,

Time = 100 s

[emperature [K] Fime 0.0647 Fime 0.0905 5000 Fime 0.1163 Time 0.1421 60 4000 Time 0 1679 s Time 0.1937 Time 0.2195 3000 Time 0 2453 s Time 0.2711 Time 0.2968 s Time 0.3226 s Time 0.3484 s z [mm] Time 0.3742 s Time 0.4 s 10 -120x [mm] Conductor position [m]

Time -0.09 Time -0.0642

Time -0.0384

Time -0.0126 ime 0.0132

Fime 0 0389

100

Time [s]

#27

Annex

Asymmetric common-coil by GL. Sabbi and E. Ravaioli (LBNL)

High Field Magnets

Energy extraction system (EE)

Coupling-Loss Induced Quench (CLIQ)

Advantages

- Fast and effective heat deposition
- Heat deposited simultaneously in most of the coil volume
- Electrically robust system

Disadvantages

- Direct electrical connection to the magnet circuit
- Challenging to make it redundant
- Additional asymmetric forces on the magnet coils

Current change

Interaction between CLIQ and energy extraction (EE) system

Discussion

- Is it possible/recommended to test and EE system together?
 - positive polarity → Superposition of voltage across CLIQ and across EE causes higher voltage to ground
- negative polarity

HFM

High Field Magnets

 \rightarrow Subtraction of voltage across CLIQ and across EE reduces CLIQ performance

Summary of quench protection results

MAIN QUENCH PROTECTION RESULTS AT NOMINAL CURRENT									
Protection system	$t_{\rm R}~[{\rm ms}]$	$T_{\rm hot}$ [K]	$U_{\rm g,m}$ [V]	$I_{\rm C,m}$ [kA]					
1000 V EER	11	312	1000	-					
1000 V EEV	11	283	1000	-					
500 V CLIQ-C1	8	321	250	4.5					
400 V CLIQ-C2	8	305	199	4.4					
300 V CLIQ-C3	8	310	184	4.3					
1000 V EER +300 V CLIQ-C1	11	266	1000	4.8					
900 V EER +100 V CLIQ-C2	11	268	958	4.7					
700 V EER +100 V CLIQ-C3	11	285	711	4.9					
1000 V EEV +300 V CLIQ-C1	11	244	1000	4.9					
900 V EEV +100 V CLIQ-C2	11	254	958	4.9					
600 V EEV +100 V CLIQ-C3	11	283	605	4.7					
Ideal 100% quench	8	279	396	-					

TABLE III MAIN QUENCH PROTECTION RESULTS AT NOMINAL CURRENT

Electrical connections of CLIQ configurations

Currents versus time for the different EE protection options

Quench protection with 1 kV energy extraction with varistor

HFM

High Field Magnets

Quench protection with 1 kV EE + 50 mF, 300 V CLIQ-C1 system

