

Planar SiC Schottky Diodes

Studying Material properties, traps, irradiation effects, annealing Towards a Radiation Damage Model

DRD3 WG6 Project Proposal

Thomas Bergauer (HEPHY) and others

DRD3 WBG Meeting, 10.10.2024

Silicon Carbide

- Wide bandgap material
 - One of first investigated semiconductors
 - Used in power electronics
 - Polytype 4H commonly used
- Features high

AUSTRIAN

SCIENCES

- Charge carrier mobilities
- Breakdown field
- Thermal conductance
- Utilization @ HEPHY
 - Low noise particle detector
 - Medical and HEP applications

HEPHY INSTITUTE OF HIGH ENERGY PHYSICS

AUSTRIAN ACADEMY OF

Radiation Damage in SiC: Open Challenges

- Open challenges in radiation damage modelling for SiC:
 - Trap information deviate in literature
 - Existing models are based on small sample sizes and specific fluences
 - Integration of a dedicated model in TCAD
- Demand for large-scale irradiation study:
 - Statistically significant sample size (>? devices)
 - Large spectrum of fluences $10^{13} n_{eq}/cm^2 10^{18} n_{eq}/cm^2$
- However: not enough sensor samples available
- Proposal:
 - irradiation study with commercially available SiC-Schottky diodes on the short term
 - Production of planar Schottky and pn-junction diodes

Available SiC Producers

CNM Barcelona

AUSTRIAN

- Had a couple of runs already
- Currently too many other projects
- Delays
- FBK Trento
 - Plan to start SiC processing
 - First run with Schottky, second run with pn-junction diodes
- Fraunhofer IISB
 - + CMOS SiC process with $2\mu m$

Commercial SiC Schottky Diodes

- Increasing availability due to demand in power electronics (BV of up to 3kV, I_f up to 40A)
- Can be obtained online & off the shelf in large numbers
- Cheap: a few cents per diode

ADEMY OF

- Come with validated characteristics, datasheets and SPICE models
- Expected depletion region thickness of $4-7\mu m$

 \rightarrow challenge for MIP detection

- \rightarrow laser and alpha particle measurements preferred for radiation sensing
- Have metal contact on top → metallization needs to be removed for laser tests

Image from: https://questsemi.com/products/copy-of-copy-of-qs-hcs-6510-650v-10a

• Schottky Barrier Diode (SBD)

AUSTRIAN CADEMY OF

- Junction Barrier Schottky (JBS) Diode
 - p-implants with Schottky contact to metal
 - Reduction of leakage current in reverse bias
- Merged PIN Schottky (MPS) Diode
 - P-implants with ohmic contact to metal
 - Reduction of leakage current in reverse bias
 - PN-junction dominates forward current at high forward voltages → better thermal stability
- MPS diodes offer best performance for power applications
 - \rightarrow mostly MPS diodes available online
 - \rightarrow TCAD modelling becomes more complex

Availability of Bare Dies

- For radiation sensing: need for bare dies
- Several vendors offer bare dies: Central Semiconductor, WolfSpeed, SemiQ, LeapSiC...
- However: first contact approaches for small number of samples were left unanswered
- Workaround 1: open packaged diodes
 - Opening packages is tedious for >? samples
 - Destruction-free opening still an open question .
- Workaround 2: commercial production run
 - Advantages:

ADEMY O

- Custom structure \rightarrow easier reverse engineering of TCAD models
- Diodes tailored for radiation sensing \rightarrow thick epi-layer, simple architecture, metallization opening for laser tests
- Disadvantages: possibly higher costs and lead times

Plan/Deliverables: Measurements

- Selection and commissioning of samples:
 - Multiple devices, e.g. differing substrate doping, IV/CV characteristics
 - If possible, different manufacturers
 - >? samples per combination
- Irradiation campaign
 - Fluences of 10^{13} n_{eq}/cm² 10^{18} n_{eq}/cm² (EURO-LABS)
 - Irradiation with different particles (neutron, proton, electron, γ)
 - ≥ 3 devices per fluence and particle
- Pre/post irradiation measurements
 - IV, CV, CCE, DLTS, MCTS, . . .
 - unchanged measurement setups
 - with(out) thermal annealing

- TCAD reverse engineering: reconstruction of IV, CV and CCE characteristics
- Additional information available through:
 - SEM, TEM and SIMS measurements for device structuring
 - SPICE models
 - If devices from production run: TCAD models maybe offered by manufacturer
- Model fitting based on measurements from irradiated samples:
 - traps

AUSTRIAN CADEMY OF

- type (donor/acceptor)
- ionization energy
- introduction rate
- electron/hole capture cross sections

- Large parameter space:
 - Work function energy (depends on metallization)
 - Substrate doping (higher doping = higher tunneling current)
 - Schottky barrier tunneling parameters
 - Diode architecture (SBD, JBS, MPS)
 - Recombination, impact ionization, ...
- Starting point: SiC Schottky diode template in Sentaurus TCAD [1]
 - Schottky contact with 5.1eV work function energy
 - Area Factor: 2e5 -> device area of 1mm²
 - Non-local barrier tunneling model (NLM)

AUSTRIAN

Sentaurus SiC Schottky Template

- Forward IV:
 - V_{on} ≈ 1.4 V
 - Forward current in the same ballpark as commercially available diodes
- Reverse IV:
 - breakdown starts at ~900V
 - Commercial devices have breakdown at 650V up to ~3000V (1200V most popular)

AUSTRIAN ACADEMY OF SCIENCES

First Simulation Efforts for JBS Diode

- From SiC Schottky template:
 - Oxide and edge termination removed
 - p⁺-implants added
- Electric field lowered at metalsemiconductor interface
- Reduced leakage current

Possible Contributions

- HEPHY Vienna: irradiation campaign, lab measurements, test beam @ Medaustron, TCAD simulations
- **INFN Perugia**: TCAD simulation, lab measurements
- **FBK**: production of Schottky and pnjunction 4H-SiC diodes
- **INFIM Romania** (Ioana Pintilie): defect investigations, FTIR and Hall measurements
- INFN Torino

USTRIAN