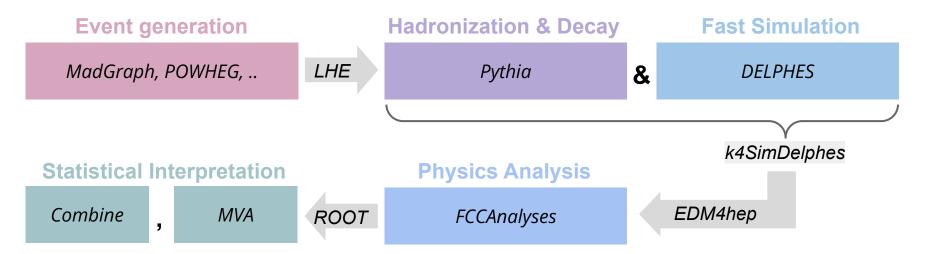
# **Software tutorial for FCC-hh studies**

17.10.2024 FCC-hh Physics & Performance meeting

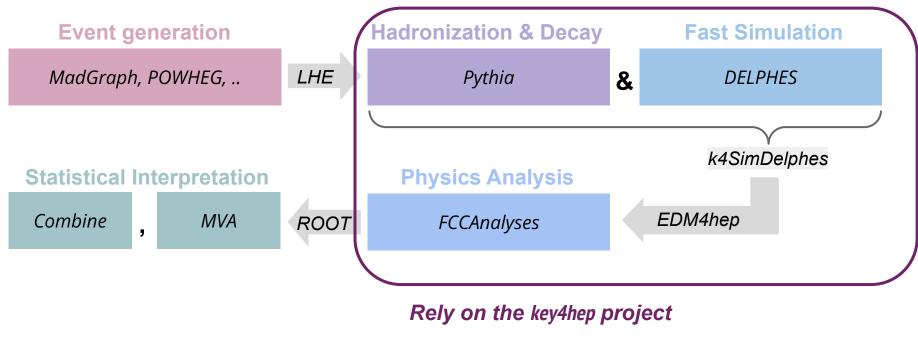
**Birgit Stapf** 




### Introduction

- Do you have an idea for a FCC-hh study, but find yourself wondering how you would go about putting it into practice?
  - After my <u>overview presentation in the last general meeting</u>, we will put what we learned into practice and run a small analysis example together

 Note: All current and planned physics studies for FCC-hh rely on fast simulation with Delphes, there is also ongoing work and lots of opportunity for stand-alone full simulation studies, focussing e.g. on pile-up, tracking with timing information, flavour tagging → not part of this tutorial!

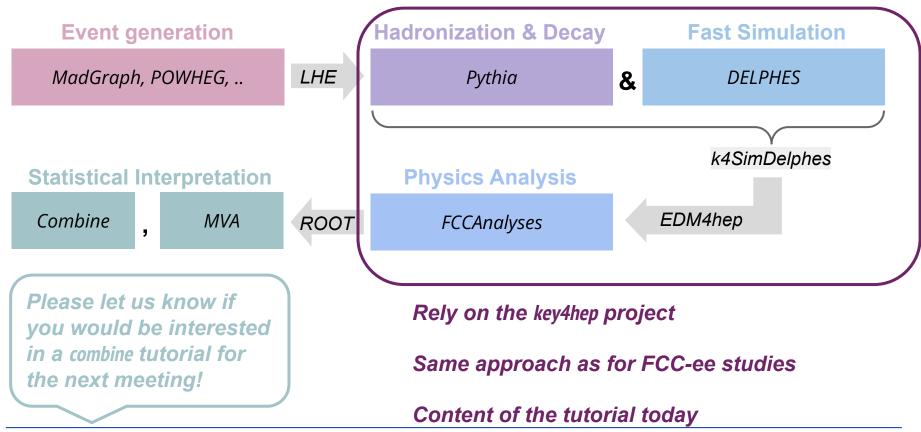



### **Overview of technical workflow**





### **Overview of technical workflow**




Same approach as for FCC-ee studies

Content of the tutorial today



## **Overview of technical workflow**



### **Caveats & remarks**

- This tutorial assumes no previous experience with FCC software or fast simulation with Delphes, tries to give a basic insight into the concepts
  - But it is not a simulation tutorial! Refer to <u>Delphes documentation</u>
- We will start from existing LHE for the process of interest
  - A tutorial on event generation is available <u>here</u>, but it is FCC-ee specific
  - If you have or need additional LHE, please get in touch!
- We will run a small file through Pythia + Delphes locally as an example
  - Normally this is done in a large scale production with <u>EventProducer</u>
  - We will start a new fast sim production campaign soon (v0.6), please get in touch about which samples you would need



## Event generation

### Step 1: Finding available LHE events in the database

#### https://fcc-physics-events.web.cern.ch/

| aditio | onal stats about the production can be found $\underline{he}$ | <u>re</u> . |        |      |      |              |                                                                      |                                                 |                 |                   |                       |
|--------|---------------------------------------------------------------|-------------|--------|------|------|--------------|----------------------------------------------------------------------|-------------------------------------------------|-----------------|-------------------|-----------------------|
| Nar    | me lambda100                                                  |             |        |      |      |              |                                                                      |                                                 |                 |                   |                       |
|        |                                                               |             |        |      |      |              |                                                                      |                                                 | Expand          | able              |                       |
| 40     | Name                                                          | Nevents     | Nfiles | Nbad | Neos | Size<br>[GB] | Output Path                                                          | Main<br>Process                                 | Final<br>States | Matching<br>Param | Cross Section<br>[pb] |
| 28     | mg_pp_hh_lambda100_5f                                         | 15,300,000  | 1530   | 0    | 1530 | 2.59         | /eos/experiment/fcc/hh/generation/lhe//<br>mg_pp_hh_lambda100_5f/    | HH, H-<br>>bb, H<br>undec.,<br>kl = 1.00        |                 |                   | 1.42752               |
| 42     | mg_pp_hhj_lambda100_5f                                        | 8,750,000   | 875    | 0    | 875  | 1.25         | /eos/experiment/fcc/hh/generation/lhe//<br>mg_pp_hhj_lambda100_5f/   | HH + 1<br>jet,<br>pT(HH)<br>> 200,<br>kl = 1.00 | inclusive       |                   | 0.05644               |
| 815    | mg_pp_tthh_lambda100_5f                                       | 1,000,000   | 100    | 0    | 100  | 0.17         | /eos/experiment/fcc/hh/generation/lhe//<br>mg_pp_tthh_lambda100_5f/  | ttHH                                            | inclusive       |                   | 0.0595724055          |
| 875    | mg_pp_vbfhh_lambda100_5f                                      | 1,000,000   | 100    | 0    | 100  | 0.17         | /eos/experiment/fcc/hh/generation/lhe//<br>mg_pp_vbfhh_lambda100_5f/ | VBF HH<br>(qq-<br>>jjHH)                        | inclusive       |                   | 0.072176497           |
| 61     | mg_pp_vhh_lambda100_5f                                        | 1,000,000   | 100    | 0    | 100  | 0.14         | /eos/experiment/fcc/hh/generation/lhe//<br>mg_pp_vhh_lambda100_5f/   | VHH                                             | inclusive       |                   | 0.01159155            |
| 576    | pw_pp_hh_lambda100_5f                                         | 10,329,977  | 1033   | 0    | 1033 | 1.64         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f/    | gg->HH<br>(NLO)                                 | inclusive       |                   | 1.13822               |

- For many processes, LHE events are available in the database
  - Navigate to the FCC-hh LHE
     database
- We will use a SM di-Higgs production sample named
   pw\_pp\_hh\_lambda100\_5f
  - Search for the sample What

production mode is it? What is the cross-section?



### **Event generation**

### Step 1: Finding available LHE events in the database

#### https://fcc-physics-events.web.cern.ch/


#### FCC FCC-ee FCC-hh

#### **FCC Physics Events**

Database of pre-generated samples for FCC-hh and FCC-ee physics performance studies

#### Accelerators

The FCC integrated program includes two accelerator proposals:



#### FCC-hh Samples



#### FCC-hh | Gen | Les Houches Samples

Additional stats about the production can be found here.

Name pw\_pp\_hh\_lambda100\_5f

|     |                                           |            |        | Expand table |      |              |                                                                                       |                 |                 |                   |                          |  |
|-----|-------------------------------------------|------------|--------|--------------|------|--------------|---------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|--------------------------|--|
| No  | Name                                      | Nevents    | Nfiles | Nbad         | Neos | Size<br>[GB] | Output Path                                                                           | Main<br>Process | Final<br>States | Matching<br>Param | Cross<br>Section<br>[pb] |  |
| 576 | pw_pp_hh_lambda100_5f                     | 10,329,977 | 1033   | 0            | 1033 | 1.64         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f/                     | gg->HH<br>(NLO) | inclusive       |                   | 1.13822                  |  |
| 609 | pw_pp_hh_lambda100_5f_80TeV               | 110,030    | 1103   | 0            | 1033 | 0.80         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f_80TeV/               | gg->HH<br>(NLO) | inclusive       |                   | 1.13822                  |  |
| 612 | pw_pp_hh_lambda100_5f_100TeV_testSA       | 24,000     | 8      | 0            | 0    | 0.00         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f_100TeV_testSA/       | 1               | 1               | 1                 | 1                        |  |
| 613 | pw_pp_hh_lambda100_5f_100TeV_testSA_fixed | 24,000     | 8      | 0            | 0    | 0.00         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f_100TeV_testSA_fixed/ | 1               | 1               | 1                 | 1                        |  |
| 622 | pw_pp_hh_lambda100_5f_80TeV_SA            | 1,200,000  | 400    | 0            | 0    | 0.19         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f_80TeV_SA/            | 1               | 1               | 1                 | 1                        |  |
| 625 | pw_pp_hh_lambda100_5f_120TeV_SA           | 1,191,000  | 397    | 0            | 0    | 0.19         | /eos/experiment/fcc/hh/generation/lhe//<br>pw_pp_hh_lambda100_5f_120TeV_SA/           | 1               | 1               | 1                 | 1                        |  |
|     |                                           |            |        |              |      |              |                                                                                       |                 |                 |                   |                          |  |



- .....

### Hadronization, decay & fast simulation Step 2.1: Setting up the key4hep stack

#### mkdir EDM4HEP\_prod cd EDM4HEP\_prod

source /cvmfs/sw.hsf.org/key4hep/setup.sh

which DelphesPythia8\_EDM4HEP

- Turnkey software for future projects,e.g. CEPC, ILC, muon collider, ..
- Complete workflow from generator to analysis (although for FCC we are not using every step)
- In practice: A complete software stack to set up in one simple step
- Will use the DelphesPythia8\_EDM4HEP tool to run Pythia + Delphes + produce EDM4hep output file, from

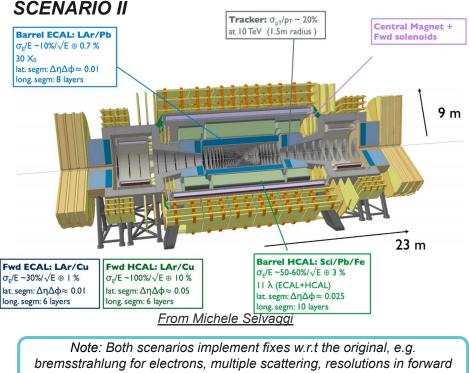
k4SimDelphes



## \_\_\_\_\_

# Hadronization, decay & fast simulation

Step 2.2: Running k4SimDelphes


#### DelphesPythia8\_EDM4HEP -h

- ls \$DELPHES\_DIR/cards/FCC/scenarios/FCChh\_I.tcl
- ls \$K4SIMDELPHES/edm4hep\_output\_config.tcl
- ls /eos/experiment/fcc/hh/tutorials/lhe\_unpacked\_tester/

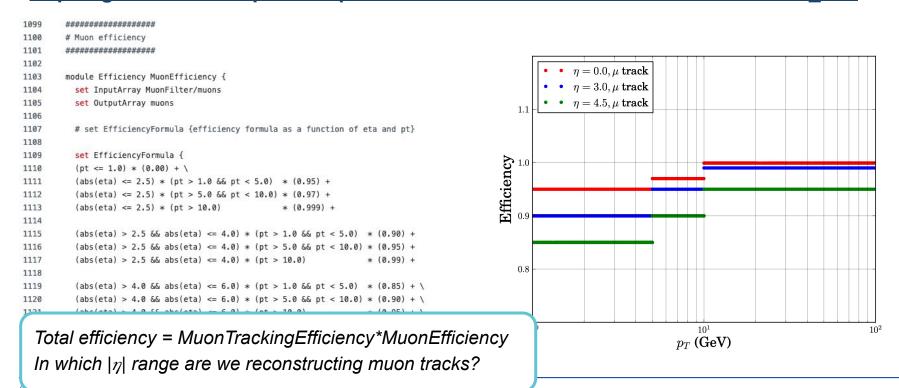
DelphesPythia8\_EDM4HEP \$DELPHES\_DIR/cards/FCC/scenarios/FCChh\_I.tcl \$K4SIMDELPHES/edm4hep\_output\_config.tcl /eos/experiment/fcc/hh/tutorials/lhe\_unpacked\_tester/tester\_pwp8\_pp\_ hh\_5f\_hhbbyy.cmd pwp8\_pp\_hh\_5f\_hhbbyy.root

- Need to provide:
  - Config\_file = Delphes card
  - Output\_config\_file for EDM4hep
  - pythia\_card = Decay & Hadr.
  - output\_file = Name of file
- Delphes cards ship with the Delphes installation: <u>Can browse them here</u>
- Standard EDM4hep output config file comes with key4hep stack
- Tester LHE file(s) & pythia cards provided in tutorial eos space

## Step 2.3: Understanding the Delphes card



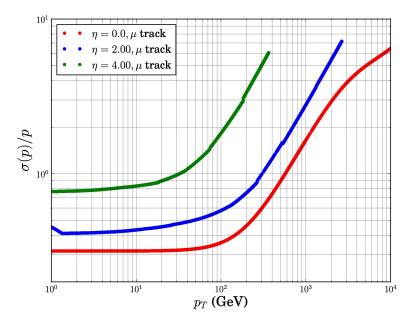
region


- Two current Delphes scenarios for FCC-hh:
  - <u>Scenario I</u>: Idealistic scenario for ultimate precision
  - <u>Scenario II</u>: Baseline scenario based
     on FCC-hh detector concept from CDR
    - Should be default for new studies

|           | Relative <i>p</i> | resolution  | Efficiency |             |  |
|-----------|-------------------|-------------|------------|-------------|--|
|           | Scenario I        | Scenario II | Scenario I | Scenario II |  |
| Electrons | 0.4-1%            | 0.8-3%      | 76-95%     | 72-90%      |  |
| Muons     | 0.5-3%            | 1-6%        | 90-99%     | 88-97%      |  |
| Medium b- | tagging           | 80-90%      | 76-86%     |             |  |



### Hadronization, decay & fast simulation Step 2.3: Understanding the Delphes card


#### https://github.com/delphes/delphes/blob/master/cards/FCC/scenarios/FCChh l.tcl



#### Step 2.3: Understanding the Delphes card

#### https://github.com/delphes/delphes/blob/master/cards/FCC/scenarios/muonMomentumResolution I.tcl

```
9
       # Analytical formula
10
11
12
       set ResolutionFormula {
13
       ( abs(eta) >= 0 && abs(eta) <= 1 ) *
14
15
16
           (sqrt(1e-5/sin(2*atan(exp(-abs(eta))))^2 + (
17
                                3*9.06262e-8 *pt^2* cosh(
18
                eta)^2 *(2.82074e-7/sin(2*atan(exp(-abs(eta))))^2 + (
19
                 504.525 *(1/400000000 + (0.117945* 1/cosh(eta)^2)/(
20
                    pt^2 *sin(2*atan(exp(-abs(eta))))^2)))/
21
                 sin(2*atan(exp(-abs(eta))))^2) *sin(2*atan(exp(-abs(eta))))^2)/(
22
              0.00516429/sin(2*atan(exp(-abs(eta))))^2 + (
23
               96868.8 *(1/400000000 + 5*(0.117945 * 1/cosh(eta)^2)/(
24
                  pt^2 *sin(2*atan(exp(-abs(eta))))^2)))/
25
               sin(2*atan(exp(-abs(eta))))^2))
26
27
          ) +
28
29
30
       ( abs(eta) > 1 && abs(eta) < 1.30 ) *
31
32
           (sqrt(1e-5/tan(2*atan(exp(-abs(eta))))^2 + (
33
                                 3*9.06262e-8 *pt^2* cosh(
34
                eta)^2 *(2.82074e-7/sin(2*atan(exp(-abs(eta))))^2 + (
35
                 504.525 *(1/400000000 + (0.117945* 1/cosh(eta)^2)/(
36
                    pt^2 *sin(2*atan(exp(-abs(eta))))^2)))/
37
                 sin(2*atan(exp(-abs(eta))))^2) *sin(2*atan(exp(-abs(eta))))^2)/(
38
              0.00516429/sin(2*atan(exp(-abs(eta))))^2 + (
39
               96868.8 *(1/400000000 + 5*(0.117945 * 1/cosh(eta)^2)/(
40
                  pt^2 *sin(2*atan(exp(-abs(eta))))^2)))/
41
               sin(2*atan(exp(-abs(eta))))^2))
42
```



) +

#### Step 2.3: Understanding the Delphes card

#### https://github.com/delphes/delphes/blob/master/cards/FCC/scenarios/FCChh\_l.tcl

| 1547 | ***********                                                                 |
|------|-----------------------------------------------------------------------------|
| 1548 | # ROOT tree writer                                                          |
| 1549 | ***********                                                                 |
| 1550 |                                                                             |
| 1551 | <pre>module TreeWriter {</pre>                                              |
| 1552 | <pre># add Branch InputArray BranchName BranchClass</pre>                   |
| 1553 | add Branch Delphes/allParticles Particle GenParticle                        |
| 1554 |                                                                             |
| 1555 | add Branch GenMissingET/momentum GenMissingET MissingET                     |
| 1556 |                                                                             |
| 1557 | #add Branch TrackMerger/tracks Track Track                                  |
| 1558 | #add Branch TowerMerger/towers Tower Tower                                  |
| 1559 |                                                                             |
| 1560 | <pre>#Temporary addition for manual isoVar validation/recalculation</pre>   |
| 1561 | # add Branch EFlowFilter/eflow ParticleFlowCandidates ParticleFlowCandidate |
| 1562 |                                                                             |
| 1563 | add Branch EFlowTrackMerger/eflowTracks EFlowTrack Track                    |
| 1564 | add Branch Calorimeter/eflowPhotons EFlowPhoton Tower                       |
| 1565 | add Branch Calorimeter/eflowNeutralHadrons EFlowNeutralHadron Tower         |
| 1566 |                                                                             |
| 1567 | add Branch UniqueObjectFinder/photons Photon Photon                         |
| 1568 | add Branch UniqueObjectFinder/electrons Electron Electron                   |
| 1569 | add Branch UniqueObjectFinder/muons Muon Muon                               |
| 1570 | add Branch UniqueObjectFinder/jets Jet Jet                                  |
| 1571 |                                                                             |
| 1572 | #collections for objects before isolation and uniqueobjectfinder            |
| 1573 | add Branch PhotonEfficiency/photons PhotonNoIso Photon                      |
| 1574 | add Branch ElectronEfficiency/electrons ElectronNoIso Electron              |
| 1575 | add Branch MuonEfficiency/muons MuonNoIso Muon                              |
| 1576 | add Branch JetEnergyScale/jets JetNoIso Jet                                 |
| 1577 |                                                                             |

- Objects to write out are specified in the TreeWriter module
- Which jets are we actually using? Which steps (i.e. modules) have they passed through? What is the minimum jet pT?



#### Step 2.4: Understanding the Pythia card

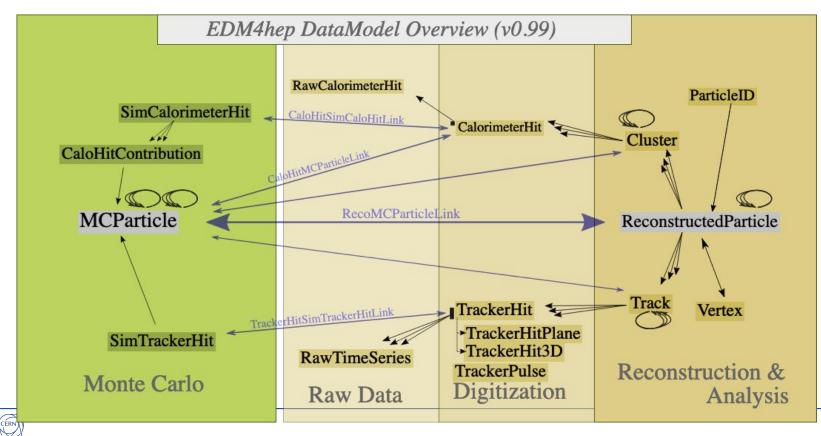


- How many events are we processing?
- Which LHE file are we reading from?
  - Which final state of the Higgs boson decays are we requiring?

#### Step 2.4: Understanding the Pythia card



L


- How many events are we processing?
- Which LHE file are we reading from?
  - Which final state of the Higgs boson decays are we requiring?

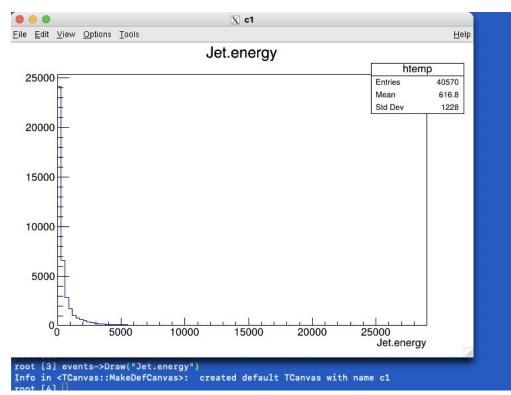
Step 2.5: Understanding the EDM4hep configuration & file

| Ţ     |                                      | Name of collection (must match<br>Delphes card names) |  |  |  |  |
|-------|--------------------------------------|-------------------------------------------------------|--|--|--|--|
| 🚬 edi | n4hep_output_config.tcl              |                                                       |  |  |  |  |
| 1     | module EDM4HepOutput EDM4HepOutput ┨ |                                                       |  |  |  |  |
| 2     | add ReconstructedParticleCollections | EFlowTrack EFlowPhoton EFlowNeutralHadron             |  |  |  |  |
| 3     | add GenParticleCollections           | Particle                                              |  |  |  |  |
| 4     | add JetCollections                   | Jet                                                   |  |  |  |  |
| 5     | add MuonCollections                  | Muon                                                  |  |  |  |  |
| 6     | add ElectronCollections              | Electron                                              |  |  |  |  |
| 7     | add PhotonCollections                | Photon                                                |  |  |  |  |
| 8     | add MissingETCollections             | MissingET                                             |  |  |  |  |
| 9     | add ScalarHTCollections              | ScalarHT                                              |  |  |  |  |
| 10    | set RecoParticleCollectionName       | ReconstructedParticles                                |  |  |  |  |
| 11    | set RecoMCParticleLinkCollectionName | MCRecoAssociations                                    |  |  |  |  |
| 12    |                                      |                                                       |  |  |  |  |



#### Step 2.5: Understanding the EDM4hep configuration & file

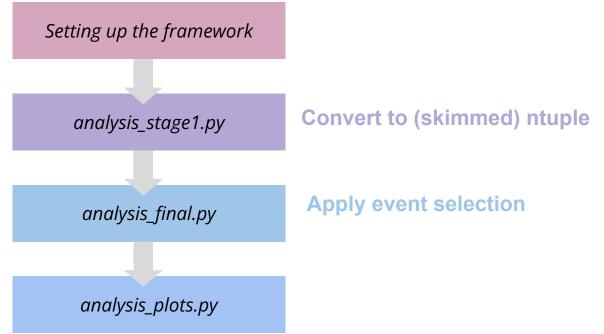



#### Step 2.5: Understanding the EDM4hep configuration & file

Attaching file /eos/experiment/fcc/hh/tutorials/edm4hep tutorial data/pwp8 pp hh 5f hhbbyy.root as file0... (TFile \*) 0x3906b20 root [1] file0->ls() TNetXNGFile\*\* root://eospublic.cern.ch//eos/experiment/fcc/hh/tutorials/edm4hep tutorial data/pwp8 pp hh 5f hhbbyy.root TNetXNGFile\* root://eospublic.cern.ch//eos/experiment/fcc/hh/tutorials/edm4hep tutorial data/pwp8 pp hh 5f hhbbyy.root **KEY: TTree** events:72 events data tree [current cvcle] **KEY: TTree** events:71 events data tree [backup cycle] **KEY: TTree** podio metadata:1 metadata tree for podio I/O functionality root [2] events->Print() \*Tree :events : events data tree \*Entries : 10000 : Total = 11750891566 bytes File Size = 1860078386 \* : Tree compression factor = 6.320 :CalorimeterHits : Int t CalorimeterHits \*Br \*Entries : 10000 : Total Size= 106955 bytes File Size = 77401 \* 72 : Basket Size= 32000 bytes Compression= 1.12 \*Baskets : \*\*\*\*\* 1 :CalorimeterHits.cellID : ULong t cellID[CalorimeterHits ] \*Br \*Entries : 10000 : Total Size= 36733008 bytes File Size = 405688 \* 89 : Basket Size= 642560 bytes Compression= 90.54 \*Baskets : \*..... \*Br 2 :CalorimeterHits.energy : Float\_t energy[CalorimeterHits\_] \*Entries : 10000 : Total Size= 18390965 bytes File Size = 227436 \* 322560 bytes Compression= 80.85 \*Baskets : 80 : Basket Size= \*..... 3 :CalorimeterHits.energyError : Float t energyError[CalorimeterHits ]\* \*Br \*Entries : 10000 : Total Size= 18391385 bytes File Size = 227828 \* 80 : Basket Size= 322560 bytes Compression= 80.72 \*Baskets : \*.....\* \*Br 4 :CalorimeterHits.time : Float t time[CalorimeterHits ] 10000 : Total Size= 18390797 bytes File Size = 18035847 \* \*Entries : \*Baskets : 80 : Basket Size= 322560 bytes Compression= 1.02 \*



Step 2.5: Understanding the EDM4hep configuration & file


Can analyse/plot from EDM4hep directly with podio, but for FCC we have the common <u>FCCAnalyses</u> framework





### **Step 3: Overview FCCAnalyses**

- <u>FCCAnalyses</u> is a common software framework to analyse EDM4hep events using ROOT's RDataframe
  - Build an "analysis graph" with very simple syntax in python code
  - C++ libraries for the complex computations
  - Examples and tutorials
     available <u>here</u>





### Step 3.1: Setting up the FCCAnalyses framework

mkdir FCCAnalyses\_examples cd FCCAnalyses\_examples

source /cvmfs/sw-nightlies.hsf.org/key4hep/setup.sh

which fccanalysis

ls \$FCCANALYSES/../share/examples/examples/FCChh/ggHH\_bbyy/

cp -r \$FCCANALYSES/../share/examples/examples/FCChh/ggHH\_bbyy/.

- Two ways to setup FW:
  - Get your local copy of

FCCAnalyses git repo

- Use build that ships with key4hep stack → for simplicity will do this for tutorial
- Start a clean shell, we will need to setup the nightlies, and will copy the example files to local



#### Step 3.2: Converting to (skimmed) analysis ntuple

#### dframe analysis\_stage1.py

# generator event weight
.Define("weight", "EventHeader.weight")

.Define("gamma", "FCCAnalyses::ReconstructedParticle::get(Photon\_objIdx.index, ReconstructedParticles)")
.Define("selp\_gamma", "FCCAnalyses::ReconstructedParticle::sel\_pt(30.)(gamma]")
.Define("sel\_gamma\_unsort", "FCCAnalyses::ReconstructedParticle::sel\_eta(4)(selpt\_gamma]")
.Define("sel\_gamma], "AnalysisFCCAnitySertParticleCollection(sel\_gamma\_unsort)") #sort by pT

#### Analysis\_FCChh.cc

| 1 | 302 |        | // SortParticleCollection                                                                                    |
|---|-----|--------|--------------------------------------------------------------------------------------------------------------|
| 1 | 303 |        | //                                                                                                           |
| 1 | 304 |        | R00T::VecOps::RVec <edm4hep::reconstructedparticledata></edm4hep::reconstructedparticledata>                 |
| 1 | 305 | $\sim$ | AnalysisFCChh::SortParticleCollection                                                                        |
| 1 | 306 |        | R00T::VecOps::RVec <edm4hep::reconstructedparticledata> particles_in) {</edm4hep::reconstructedparticledata> |
| 1 | 307 |        | <pre>if (particles_in.size() &lt; 2) {</pre>                                                                 |
| 1 | 308 |        | <pre>return particles_in;</pre>                                                                              |
| 1 | 309 |        | } else {                                                                                                     |
| 1 | 310 |        | <pre>auto sort_by_pT = [&amp;](edm4hep::ReconstructedParticleData part_i,</pre>                              |
| 1 | 311 |        | <pre>edm4hep::ReconstructedParticleData part_j) {</pre>                                                      |
| 1 | 312 |        | <pre>return (getTLV_reco(part_i).Pt() &gt; getTLV_reco(part_j).Pt());</pre>                                  |
| 1 | 313 |        | };                                                                                                           |
| 1 | 314 |        | <pre>std::sort(particles_in.begin(), particles_in.end(), sort_by_pT);</pre>                                  |
| 1 | 315 |        | <pre>return particles_in;</pre>                                                                              |
| 1 | 316 |        | }                                                                                                            |
| 1 | 317 |        | }                                                                                                            |

- The stage1.py analysis script defines
  a RDataFrame with all the branches
  we want to store, and applies a
  pre-selection
  - To access the variables and do more complex calculations we use C++ libraries in the analyzers/dataframe directory



#### Step 3.2: Converting to (skimmed) analysis ntuple

#### cd ggHH\_bbyy

#### fccanalysis run ggHH\_bbyy/analysis\_stage1.py

[bistapf@lxplus994 FCCAnalyses\_examples]\$ fccanalysis run ggHH\_bbyy/analysis\_stage1.py ---> INFO: Loading analyzers from libFCCAnalyses... ---> INFO: Loading analysis script: /afs/cern.ch/user/b/bistapf/FCChh tutorial/FCCAnalyses examples/ggHH bbvv/analysis stage1.pv ---> INFO: No multithreading enabled. Running in single thread... ---> INFO: Using generator weights ---> INFO: Started processing sample "pwp8\_pp\_hh\_5f\_hhbbyy" ... ---> INFO: Number of the output files: 1 ---> INFO: Running locally... --> Warning: Input file is missing information about original number of events! ---> Warning: Input file is missing information about original sum of weights! ---> INFO: Creating dataframe object from files: - root://eospublic.cern.ch//eos/experiment/fcc/hh/tutorials/edm4hep\_tutorial\_data//pwp8\_pp\_hh\_5f\_hhbbyy.root ---> INFO: Number of local events: 10,000 ----> INFO: Local sum of weights: 11,488.07 ---> INFO: Output file path: outputs/FCChh/ggHH\_bbyy/presel/pwp8\_pp\_hh\_5f\_hhbbyy.root ---> INFO: ===== Elapsed time (H:M:S): 00:00:13 Events processed/second: 718 Total events processed: 10,000 No. result events: 2.684 Reduction factor local: 0.2684 Total sum of weights processed: 11,488.07 No. result weighted events : 3,094.37 Reduction factor local, weighted: 0.2694

- The stage1.py analysis script defines a RDataFrame with all the branches we want to store, and applies a pre-selection
  - To access the variables and do more complex calculations we use C++ libraries in the

analyzers/dataframe directory

24

• What is the efficiency of our

pre-selection?

### Step 3.2: Converting to (skimmed) analysis ntuple

#### cd ggHH\_bbyy

#### fccanalysis run ggHH\_bbyy/analysis\_stage1.py



- The stage1.py analysis script defines
   a RDataFrame with all the branches
   we want to store, and applies a
   pre-selection
  - To access the variables and do

more complex calculations we

C++ libraries in the

vzers/dataframe directory

ne efficiency of our

tion?



#### Step 3.3: Applying the event selection

#Link to the dictonary that contains all the cross section informations etc...
procDict = "/eos/experiment/fcc/hh/tutorials/edm4hep\_tutorial\_data/FCChh\_procDict\_tutorial.json"
#Note the numbeOfEvents and sumOfWeights are placeholders that get overwritten with the correct of the sum of the su

#How to add a process that is not in the official dictionary: # procDictAdd={"pwp8\_pp\_hh\_5f\_hhbbyy": {"numberOfEvents": 4980000, "sumOfWeights": 4980000.0, "cr

# Expected integrated luminosity
intLumi = 30e+06 # pb-1

# Whether to scale to expected integrated luminosity
doScale = True

#Number of CPUs to use
nCPUS = 2

analysis\_final.py

#produces ROOT TTrees, default is False
doTree = True



- We can apply additional selection, define histograms, get a cutflow & store histograms/the ntuple at every selection cut with analysis\_final.py
  - If we provide the cross-section, lumi, etc the histograms will be scaled to expected number of events
  - Why is the cross-section here not the same as we saw in the LHE database?

#### Step 3.3: Applying the event selection

#### fccanalysis final ggHH\_bbyy/analysis\_final.py

|             |                           | ,,,        |                  |                  |  |
|-------------|---------------------------|------------|------------------|------------------|--|
| > INFO:     | Running over process: pw  | p8_pp_hh_5 | f_hhbbyy         |                  |  |
| > INFO:     | Generator scale factor f  | or "pwp8_p | p_hh_5f_hhbbyy": | 0.003209         |  |
| > INFO:     | - cross-section:          |            |                  | 0.002984 pb      |  |
| > INFO:     | - kfactor:                |            |                  | 1.075            |  |
| > INFO:     | - matching efficiency:    |            |                  | 1                |  |
| > INFO:     | Integrated luminosity: 3  | e+07 pb-1  |                  |                  |  |
| > INFO:     | Defining cuts and histog  | rams       |                  |                  |  |
| > INFO:     | Evaluating                |            |                  |                  |  |
| > INFO:     | Successfully applied eve  | nt weights | , got weighted e | vents = 3,094.37 |  |
| > INFO:     | Done                      |            |                  |                  |  |
| > INFO:     | Scaling cut yields        |            |                  |                  |  |
| > INFO:     | Cutflow:                  |            |                  |                  |  |
|             | Ra                        | w events   | Scaled events    |                  |  |
|             | – All events              | 2,684      | 2.59e+04         |                  |  |
|             | — sel0_myy                | 2,678      | 2.58e+04         |                  |  |
|             | - sel1_mbb                | 2,274      | 2.19e+04         |                  |  |
| > INFO:     | Saving the outputs        |            |                  |                  |  |
| > INFO:     | Scaling the histograms    |            |                  |                  |  |
| Updating fi | le outputs/FCChh/ggHH_bby | y/final/pw | p8_pp_hh_5f_hhbb | yy_sel0_myy.root |  |
| Number of e | vents processed: 10000    |            |                  |                  |  |
| Sum of weig | hts: 11488.0703125        |            |                  |                  |  |
| Updating fi | le outputs/FCChh/ggHH_bby | y/final/pw | p8_pp_hh_5f_hhbb | yy_sel1_mbb.root |  |
| Number of e | vents processed: 10000    |            |                  |                  |  |
| Sum of weig | hts: 11488.0703125        |            |                  |                  |  |
| > INFO:     | Saving results in LaTeX   | tables to: |                  |                  |  |
|             | outputs/FCChh/ggHH_bbyy/  | final/outp | utTabular.txt    |                  |  |
| > INFO:     |                           |            |                  |                  |  |
|             |                           |            | = SUMMARY ====== |                  |  |
|             | Elapsed time (H:M:S):     | 00:00:09   |                  |                  |  |
|             | Events processed/second:  | 277        |                  |                  |  |
|             | Total events processed:   | 2,684      |                  |                  |  |
|             |                           |            |                  |                  |  |

- We can apply additional selection, define histograms, get a cutflow & store histograms/the ntuple at every selection cut with analysis\_final.py
  - If we provide the cross-section, lumi, etc the histograms will be scaled to expected number of events
  - How many expected bbyy

events pass our selection?

#### Step 3.3: Applying the event selection

| fccanalysis final ggHH_bby                                                                                                                                                                                                                                                                   | yy/analysis_final.py                                                              | de          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|
| > INFO: Running over process: pwp8_pp_hh                                                                                                                                                                                                                                                     | a 5f hbbbuy                                                                       | st          |
| > INFO: Generator scale factor for "pwp8                                                                                                                                                                                                                                                     |                                                                                   |             |
| > INFO: - cross-section:                                                                                                                                                                                                                                                                     | 0.002984 pb                                                                       | Se          |
| > INFO: - kfactor:                                                                                                                                                                                                                                                                           | 1.075                                                                             | 30          |
| > INFO: - matching efficiency:                                                                                                                                                                                                                                                               | 1                                                                                 |             |
| > INFO: Integrated luminosity: 3e+07 pb-<br>> INFO: Defining cuts and histograms                                                                                                                                                                                                             | 1                                                                                 |             |
| > INFO: Defining cuts and histograms                                                                                                                                                                                                                                                         |                                                                                   |             |
| > INFO: Successfully applied event weigh                                                                                                                                                                                                                                                     | 15. act weighted events = 3.094.37                                                |             |
| > INFO: Done                                                                                                                                                                                                                                                                                 |                                                                                   |             |
| > INFO: Scaling cut yields                                                                                                                                                                                                                                                                   |                                                                                   |             |
| Updating file outputs/FCChh/g(<br>Number of events processed: 1(<br>Sum of weights: 11488.0703125<br>Updating file outputs/FCChh/g(<br>Number of events processed: 1(<br>Sum of weights: 11488.0703125<br>> INFO: saving results in<br>outputs/FCChh/ggH<br>> INFO:<br>Elapsed time (H:M:S). | now have an ntuple as v<br>ograms (_histo.root) at ev<br>ction sequence. (+A cutf | very step o |
| Events processed/second: 277<br>Total events processed: 2,684                                                                                                                                                                                                                                |                                                                                   |             |

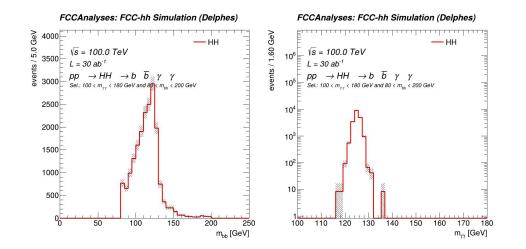
- We can apply additional selection, define histograms, get a cutflow & store histograms/the ntuple at every selection cut with analysis\_final.py
  - If we provide the cross-section,

ed to expected number of the of the ed to expected number of ts many expected bbyy

nts pass our selection?

28

ÉRN


### **Step 3.4: Plotting distributions**

```
analysis plots.py
# global parameters
intLumi
               = 30e+06 #in pb-1
               = 'pp #rightarrow HH #rightarrow b #bar{b} #gamma #gamma '
ana tex
delphesVersion = '3.4.2'
              = 100
energy
              = 'FCC-hh'
collider
              outputs/FCChh/ggHH bbyy/final/*
inputDir
formats
              = ['png', 'pdf']
yaxis
              = ['lin','log']
stacksig
              = ['nostack']
                = ['stack', 'nostack']
# stacksig
              = 'outputs/FCChh/ggHH bbyy/plots/'
outdir
plotStatUnc = True
variables = ['myy','myy_zoom', 'mbb', 'mbb_zoom', 'y1_pT','y2_pT']
# rebin = [1, 1, 1, 1, 2] # uniform rebin per variable (optional)
### Dictionary with the analysis name as a key, and the list of selections to be plotted for this analysis. T
selections = {}
selections['bbyy_analysis'] = ["sel0_myy","sel1_mbb"]
extralabel = {}
extralabel['sel0_myy'] = "Sel.: 100 < m_{#gamma#gamma} < 180 GeV"
extralabel['sel1_mbb'] = "Sel.: 100 < m_{#gamma#gamma} < 180 GeV and 80 < m_{bb} < 200 GeV"
colors = {}
colors['bbyy_signal'] = R00T.kRed
plots = {}
plots['bbyy_analysis'] = {'signal':{'bbyy_signal':['pwp8_pp_hh_5f_hhbbyy']},
leaend = {}
legend['bbyy signal'] = 'HH'
```

With analysis\_plots.py we can extract the histograms, and present them nicely on a canvas as usual (e.g. stacking backgrounds, adding uncertainties, legends & labels)

## Physics Analysis Step 3.4: Plotting distributions

#### fccanalysis plots ggHH\_bbyy/analysis\_plots.py



With analysis\_plots.py we can extract the histograms, and present them nicely on a canvas as usual (e.g. stacking backgrounds, adding uncertainties, legends & labels)

.

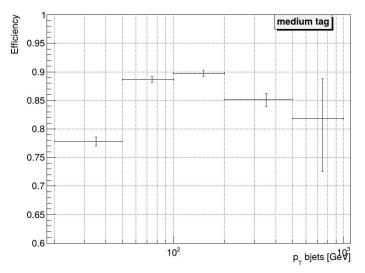
That's it for today :)



## Summary

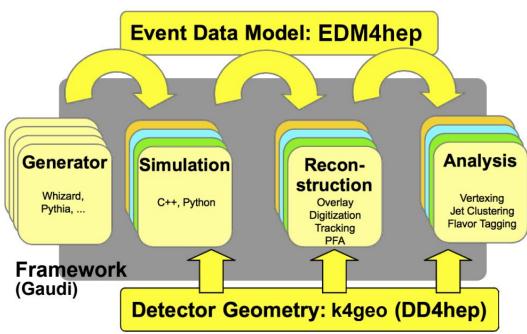
#### Key take-away messages

- We have a <u>database of available LHE events</u>
  - If you have or would need more processes added, please get in touch
- Hadronization, decay and Delphes fast simulation are run in one step, using key4hep tools
  - Two FCC-hh Delphes scenarios are available, <u>FCChh\_II.tcl</u> is the baseline
  - We will start a new fast sim production campaign soon (v0.6), please get in touch about which samples you would need
- The EDM4hep files produced can be processed with the <u>FCCAnalyses</u> framework
  - As usual: The software stack is under constant development, updates to the core code are in the pipeline, but the user code should not be affected (much)
- Refer to our <u>FCC-hh Physics & Performance documentation page</u>
  - Join FCC software meetings & mailing lists (see FCC Software Documentation)







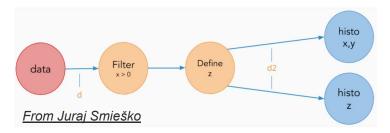


#### Bonus exercise: Checking Delphes b-tagging efficiencies

- The example directory ggHH\_bbyy also contains two additional scripts:
  - analysis\_plot\_tag\_eff.py to be run as a FCCAnalyses stage1 analysis
  - plot\_tag\_eff.py to be run standalone
- With which you can plot the b-tagging efficiency in our events in bins of pT and η, so that you can compare it to what is in the Delphes card





## Key4hep project




- Turnkey software for future accelerators, used by different communities, e.g. CEPC, ILC, muon collider, ..
- Provides complete workflow from generator to analysis (although for FCC we are not using every step)
- In practice: A complete software stack to set up in one simple step

source /cvmfs/sw.hsf.org/key4hep/setup.sh



### **FCCAnalyses framework**

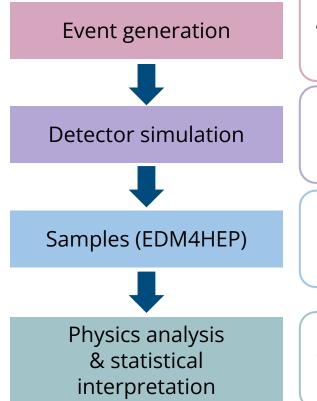


# Mandatory: analyzers function to define the analysis graph, please make # sure you return the dataframe, in this example it is dframe2

```
def analyzers(self, dframe):
....
Analysis graph.
...
```

dframe2 = ( dframe

```
.Define("weight", "EventHeader.weight")
```


.Define("gamma", "FCCAnalyses::ReconstructedParticle::get(Photon\_objIdx.index, ReconstructedParticles)")
.Define("selpt\_gamma", "FCCAnalyses::ReconstructedParticle::sel\_t(30.)(gamma)")
.Define("sel\_gamma", "AnalysisFCCAnalyses::ReconstructedParticle::sel\_eta(4)(selpt\_gamma)")
.Define("sel\_gamma", "AnalysisFCChh::SortParticleCollection(sel\_gamma\_unsort)") #sort by pT

.Define("ngamma", "FCCAnalyses::ReconstructedParticle::get\_n(sel\_gamma)") .Define("g1\_e", "FCCAnalyses::ReconstructedParticle::get\_e(sel\_gamma)[0]") .Define("g1\_pt", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[0]") .Define("g1\_phi", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[0]") .Define("g2\_e", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[0]") .Define("g2\_pt", "FCCAnalyses::ReconstructedParticle::get\_e(sel\_gamma)[1]") .Define("g2\_pt", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[1]") .Define("g2\_pt", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[1]") .Define("g2\_pt", "FCCAnalyses::ReconstructedParticle::get\_eta(sel\_gamma)[1]") .Define("g2\_phi", "FCCAnalyses::ReconstructedParticle::get\_phi(sel\_gamma)[1]")

- <u>FCCAnalyses</u> is a common software framework to analyse EDM4hep events using ROOT's RDataframe
  - Build an "analysis graph" with very simple syntax in python code
  - C++ libraries for the complex computations
  - Examples and tutorials available here



### What did we use for the ongoing HH studies?



Generators: MG5\_aMC, v 2.5.X (bkgs), POWHEG-BOX-V2 (sig) PDF sets: NN23LO1, NNPDF30\_nlo\_as\_0118 from LHAPDF v6.1.6 Production framework: EventProducer from my fork, using custom key4hep release "2023-06-05-fcchh"

Delphes cards: Scenario I & II Framework: Same EventProducer setup as above Production Tags: fcc\_v05\_scenarioI, fcc\_v05\_scenarioII

Edm4hep status: Pre- official v1 release, v00-08

Analysis framework: FCCAnalyses from my fork, with many custom fixes and additions, branched off in July 2023