

Jet-flavour tagging at FCC-hh

FCC-hh Physics & Performance Meeting <u>Wei Sheng Lai</u>, Nikita Pond, Tim Scanlon, Sebastien Rettie, Sam Van Stroud 17th October 2024

Overview

UC

- Flavour tagging
 - Motivation
 - Transformer based model (first attempt @ FCC-hh)
- Validating workflow with FCC-ee
- Data simulation
 - Fast detector simulation (Delphes)
 - Input variables
- Performance
- Summary

O FCC

Flavour tagging (b-tagging)

Why?

- Many signatures of interest contain b-jets
 - e.g Higgs boson decay
- Important in many new physics searches
- Also useful for rejecting backgrounds
 - e.g. $t\overline{t}$ production can be troublesome $(t \rightarrow bW)$

17/10/2024

How?

- b-hadrons have a relatively long lifetime (~1.5ps)
- Presence of 1+ displaced vertex within the jet
- Tracks with large impact parameter values (d_0)

Flavour tagging at FCC-hh

- Understand flavour-tagging performance at FCC-hh
 - Impact of new detector designs and collider conditions
- Study:
 - Performance as a function of pT and η
 - Impact on very large pile-up

ATLAS Simulation Preliminary

DL1r

5000

Ref

- Transformer-based architecture (GN2) [ATL-PHYS-PUB-2022-027]
- Jet kinematics are concatenated with jet constituents inputs
- Predict: Jet flavour classification (primary task),

track truth origin and vertexing (auxiliary task)

Output: p_i : probability of each classes

Delphes + Pythia

- Event generation
- Detector simulation

DelphesFTAG

- ROOT to h5 ntuples (preferred format for ML training)
- Extracting auxiliary task information

Salt [link]

Model training

Validate setup with FCC-ee

Inspired by Particle-Net [1902.08570] on FCC-ee [2202.03285]

- Authors (Michele Selvaggi) very helpfully provided their samples/code
- Use as benchmark to test setup, code generation and relative performance

Event generation (Madgraph + Pythia)

- $ee \rightarrow ZH \rightarrow \nu\nu jj \ (\sqrt{s} = 240 \text{ GeV})$
- Provided by authors
- Focus on identifying jets from Higgs decays (b, c, s, ud, gluon)
- 10 million jets labelled according to the Higgs decay process

Performance

Discriminant Function constructed to study the discriminant between pairs of flavour

$$D_{ij} = \frac{p_i}{p_i + p_j}$$

i = signal flavour j = background flavour

Use discriminant values cut to determined whether a jet is tagged or not

Results:

FCC

- Reproduced ParticleNetIDEA results
- Validated sample generation/evaluation
- Similar performance achieved

FCC-hh with Delphes

- Modified baseline FCC-hh Delphes cards based on conceptual design report (CDR) [CERN-2022-002]
- DenseTrackFilter module:
 - Remove overlapping tracks in dense environment
- TrackCovariance module:
 - Similar to FCC-ee IDEA detector approach
 - Implemented simple description of tracking detector layout (tklayout link)
 - Simulate track parameters and covariance matrix
 - Validated resolutions agree with predictions from CDR
- Same approach to Scenario I detector card (Optimistic: higher tracking efficiency)

17/10/2024

9

Simulating data (Pythia)

- Low pT (20 300 GeV):
 - $pp \rightarrow ZH \rightarrow \nu\nu jj$ (4 million jets)
- High pT (300 5000 GeV)
 - $pp \rightarrow Z' \rightarrow jj$ (4 million jets)
- Only select leading 2 jets
- Assume 0 pileup effect
- Primarily interested in identifying b or c-jets while rejecting other flavours
- Labelling of jet flavour is done based on truth hadron content
 - Similar to ATLAS approach

Jet Flavour	Presence of b-Hadron	Presence of c-Hadron
b-jet	\checkmark	-
c-jet	×	\checkmark
light-jet	×	×

Input variables

Jet Variables	Description		
p_T	Jet transverse momentum		
η	Jet pseudorapidity		Jet kinematics
Track Variables	Description		
$E_{\rm const}/E_{\rm jet}$	Energy of jet constituent divided by the jet energy		
$ heta_{ ext{eta}}$	Polar angle of the jet constituent, relative to the jet momentum		Relative kinematics
$\phi_{ m rel}$	Azimuthal angle of the jet constituent, relative to the jet momentum		
d_{xy}	Transverse impact parameter of the track		
d_z	Longitudinal impact parameter of the track		
SIP_{2D}	Signed 2D impact parameter of the track		
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	Signed 2D impact parameter significance of the track		
$\mathrm{SIP}_{\mathrm{3D}}$	Signed 3D impact parameter of the track		Track narameters
$\mathrm{SIP}_{\mathrm{3D}}/\sigma_{\mathrm{3D}}$	Signed 3D impact parameter significance of the track		hack parameters
$d_{ m 3D}$	Jet track distance at their point of closest approach		
$d_{ m 3D}/\sigma_{d m 3D}$	Jet track distance significance at their point of closest approach		
C_{ij}	Covariance matrix of track parameters)	
q	Electric charge of the particle		
isMuon	If the particle is identified as muon		
isElectron	If the particle is identified as electron		
isPhoton	If the particle is identified as photon		Particle Identification
isChargedHadron	If the particle is identified as a charged hadron	_	
isNeutralHadron	If the particle is identified as a neutral hadron	J	

ATLAS-style discriminant

UC

- Model outputs 3 probabilities p_b , p_c and p_l
- To identify b-jets while rejecting c and light-jets
 - Discriminant setup:

$$D_b = \ln\left(\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_l}\right)$$

GN2 @ FCC-hh

FCC

Low pT (20 – 300 GeV)

Very strong b-tagging performance! With scenario I better than II (as expected)

GN2 @ FCC-hh profiling performance

GN2 @ FCC-hh profiling performance

Flavour tagging performance maintained up to $|\eta| < 5$

17/10/2024

Summary

- Workflow established to study flavour-tagging performance at FCC-hh
- Studied performance with different detector scenarios (I/II)
- Provided parameterisations of b-tagging performance:

Interesting study: Adding pile-up

Backup

FCC-ee IDEA detector

FCC

FCC-hh tracking detector

GN2 @ FCC-hh (c-tagging)

UCL

IDEA vs FCC-hh 1st layer

IDEA detector silicon pixel pitch size:

- 20um x 20um
- Resolution of 3um x 3um

FCChh detector silicon pixel pitch size:

- 25um x 50um
- Resolution of 7um x 14 um

_			
	Pixels (inner)	Macro-pixels (middle)	Striplets/Macro-pixels (outer)
	$25 imes50\mathrm{\mu m}^2$ (1–4th BRL)	$33.3 imes400{ m \mu m}^2$	$33.3\mu\mathrm{m} imes 50\mathrm{mm}$ (BRL)
	$25 imes50\mathrm{\mu m}^2$ (1st EC ring)		$33.3\mu\mathrm{m} imes 10\mathrm{mm}$ (EC)
	$33.3 imes100\mathrm{\mu m}^2$ (2nd EC ring)		
	$33.3 \times 400 \mu{\rm m}^2$ (3–4th EC ring)		

FCC

Flat layout:

IDEA vs FCC-hh 1st layer

Inner layer of IDEA assumed to be closer to collision point

 $TABLE \ I. - \ The \ main \ parameters \ of \ the \ IDEA \ concept \ detector.$

Parameters	
vertex technology vertex inner/outer radius (cm)	silicon 1.7/34
tracker technology tracker half length (m) tracker outer radius (m)	drift chamber and silicon wrapper 2.0 2.0
solenoid field (T) solenoid bore radius/half length (m)	$2.0 \\ 2.1/3.0$
preshower absorber preshower R_{min}/R_{max} (m)	$\begin{array}{c} \text{lead} \\ 2.4/2.5 \end{array}$
DR calorimeter absorber DR calorimeter R_{min}/R_{max} (m)	$\begin{array}{c} \text{copper} \\ 2.5/4.5 \end{array}$
overall height/length (m)	11/13

Layer no :	1	2	3	4	5	6	Total
Average radius [mm] :	25.00	60.00	100.00	150.00	270.00	400.00	
Radius-min [mm] :	23.28	58.28	98.28	148.28	261.07	391.07	
Radius-max [mm] :	27.47	63.03	102.52	152.26	280.11	409.73	
Z-min [mm] :	-685.0	-820.0	-820.0	-820.0	-820.0	-820.0	
Z-max [mm] :	685.0	820.0	820.0	820.0	820.0	820.0	
Number of rods :	14	16	26	38	34	50	
Number of modules per rod :	20	40	40	40	17	17	
Number of modules :	280	640	1040	1520	578	850	4908
Disk no :	1	2	3	4	5	Total (+Z & -Z)
Radius-min [mm] :	25.0	25.0	25.0	25.0	25.0		
Radius-max [mm] :	404.0	404.0	404.0	404.0	404.0		
Average Z pos. [mm] :	950.0	1178.5	1462.0) 1813.7	2250.0		
Z-min [mm] :	941.1	1169.6	1453.1	1804.8	2241.1		
Z-max [mm] :	958.9	1187.5	1471.0	1822.6	2258.9		
Number of rings :	4	4	4	4	4		
Number of modules per disk :	108	108	108	108	108	1080	
Ring no :	1	2	3 4				
R-min [mm] :	25.0	101.3	198.9 3	02.6			
R-max [mm] :	104.7	204.6	303.4 4	04.0			
Number of modules per ring :	12	20	32 4	4			

FCC detector

IDEA detector

Type Name		GN1	GN2
Hyperparameter	Trainable parameters	0.8M	$1.5\mathrm{M}$
Hyperparameter	Learning rate	1e-3	OneCycle LRS (max LR $4e-5$)
Hyperparameter	GNN Layers	3	6
Hyperparameter	Attention Heads	2	8
Hyperparameter	Embed. dim	128	192
Architectural	Attention type	GATv2	ScaledDotProduct
Architectural	Dense update	No	Yes (dim 256)
Architectural	Separate value projection	No	Yes
Architectural	LayerNorm + Dropout	No	Yes
Inputs	Num. training jets	30M	192M

[FTAG-2023-01]

GN2 @ ATLAS vs FCC-hh

17/10/2024

GN2 @ ATLAS vs FCC-hh

17/10/2024

GN2 @ ATLAS vs FCC-hh

	Г	Γ	Π

	LHC (IBL)	FCC-hh		
Resolution	10µm x 66µm	7μm x 14μm		

IBL pitch size:

- 50um x 250um
- Resolution of 10um x 66 um

Layer no :	1	2	3	4	5	6	Total
Average radius [mm] :	25.00	60.00	100.00	150.00	270.00	400.00	
Radius-min [mm] :	23.28	58.28	98.28	148.28	261.07	391.07	
Radius-max [mm] :	27.47	63.03	102.52	152.26	280.11	409.73	
Z-min [mm] :	-685.0	-820.0	-820.0	-820.0	-820.0	-820.0	
Z-max [mm] :	685.0	820.0	820.0	820.0	820.0	820.0	
Number of rods :	14	16	26	38	34	50	
Number of modules per rod :	20	40	40	40	17	17	
Number of modules :	280	640	1040	1520	578	850	4908
Disk no :	1	2	3	4	5	Total (+Z & -Z)
Radius-min [mm] :	25.0	25.0	25.0	25.0	25.0		
Radius-max [mm] :	404.0	404.0	404.0	404.0	404.0		
Average Z pos. [mm] :	950.0	1178.5	1462.0	1813.7	2250.0		
Z-min [mm] :	941.1	1169.6	1453.1	1804.8	2241.1		
Z-max [mm] :	958.9	1187.5	1471.0	1822.6	2258.9		
Number of rings :	4	4	4	4	4		
Number of modules per disk :	108	108	108	108	108	1080	
Ring no :	1	2	3 4				
R-min [mm] :	25.0	101.3	198.9 30	02.6			
R-max [mm] :	104.7	204.6	303.4 40	04.0			
Number of modules per ring :	12	20	32 44	1			

Flat layout:

Pixels (inner)	Macro-pixels (middle)	Striplets/Macro-pixels (outer)
$\begin{array}{c} 25\times 50\mu\textrm{m}^2 \ (\textrm{1-4th BRL}) \\ 25\times 50\mu\textrm{m}^2 \ (\textrm{1st EC ring}) \\ 33.3\times 100\mu\textrm{m}^2 \ (\textrm{2nd EC ring}) \\ 33.3\times 400\mu\textrm{m}^2 \ (\textrm{3-4th EC ring}) \end{array}$	$33.3\times400\mu\text{m}^2$	$33.3\mu m imes 50mm$ (BRL) $33.3\mu m imes 10mm$ (EC)

FCChh detector silicon pixel pitch size:

- 25um x 50um
- Resolution of 7um x 14 um

31<R<40

42.5<R<242

255<R<549

251<R<610

554<R<1082

617<R<1106