Higgs pair production at the FCC-hh

Sam Valentine, Lennox Wood, Monica D'Onofrio, Jordy Degens, Carl Gwilliam, Cristiano Sebastiani

Introduction

- **• Previous studies** using a BDT were developed in 2022 ([see presentation at Higgs pair by Matt](https://indico.cern.ch/event/1001391/contributions/4817699/attachments/2454676/4207590/HHatFCChh-HiggsPairWorkshop2022.pdf) [Sullivan\)](https://indico.cern.ch/event/1001391/contributions/4817699/attachments/2454676/4207590/HHatFCChh-HiggsPairWorkshop2022.pdf)
	- Results taking into account both $\tau_{\mathsf{L}}\tau_{\mathsf{H}}$ and τ_{H} τ_{H}
	- Very good sensitivity, comparable with published studies ([https://arxiv.org/pdf/2004.03505\)](https://arxiv.org/pdf/2004.03505)

This work: implement graph neural networks

- **• GNN pipeline from Alessio Devoto** (PhD Computer Scientist, University of Rome Sapienza)
- Graph for each event, each object is a node
- Fully connected, each node has several features
- Different models tested (GCN, **GAT**)
- Systematic evaluation of performance based on relevant metrics (S vs B separation, AUC)
- Inputs and samples using official samples (EDM4HEP format) and ntuples generated with FCC analysis starterkit (same as linked in Matt's slides above)

FCC simulation

- Baseline FCC-hh detector response simulated using Delphes (v4) parameterisation

- Lepton (e, μ) and photon reconstruction employs parameterised reco/ID efficency & resolution effects
- Jet reconstruction uses Anti-kT algorithm with $R = 0.4$
- Object isolation calculated using cone of $R = 0.3$
- b-tagging, c-tagging and τ-tagging efficiency parameterised in pT, η

FCCAnalysis framework

- Common RDataFrame analysis framework developed for FCC physics studies: FCCAnalyses

- Common C++ analysers, analysis-specific Python config & analysis:

- See C. Helsens talk for example workflow
- FCC analysis starterkit
- Inputs to analyses are produced in EDM4HEP format:
	- All available MC listed here

- Efficient analysis possible with handful of scripts

HH at FCC

- Numerous existing studies on HH at FCC-hh:

- HH production (b⁻bb⁻b, b⁻bττ, b⁻bγγ)
- HH + jet production (boosted b⁻bb⁻b, b⁻b_{TT}, resolved b¯bττ)
- Combination of resolved channels has expected δµ of 2.4-5.1%, δκλ of 3.4-7.8%
- Boosted b¯bττ can constrain κλ to within 8% alone!
- What can be improved upon?

bbtautau channel

- Focus on HH →bbττ channel
- Use more modern MVA tools to improve S/B:
	- GNN and GraphTransformers
- Use latest FCC-hh simulated samples with more complete background estimation:
	- Top backgrounds: t⁻t, single top (s-/t-channel),

t¯tV, t¯ tVV

- Single Higgs backgrounds: ggF, VBF, t^{-t}H, VH
- Continuum backgrounds: QCD+EW (e.g. pp)

 \rightarrow b⁻bZ /y*), EW (e.g.pp \rightarrow HZ /y*)

preliminary selections

- Apply loose topological and kinematic cuts:
	- b b b t T and exactly 1 e/μ and exactly 1 hadronic τ (OS)
	- b⁻bτh τh : 2 b-jets, exactly 2 hadronic τ (OS), lepton veto
- Overlap removal prioritises taus over b-jets

GNN selection

GNN pipeline from Alessio Devoto (PhD computer Scientist, University of Rome Sapienza)

- Graph for each event, each object is a node
- Fully connected, each node has several features
- Different models tested (GCN, **GAT**)

GNN performance

Additional feature nodes

Add complex reconstructed kinematic variables

- b-jet pairs invariant mass
- tau-lepton invariant mass
- radial distances among b and tau objects and ETMiss centrality as in ATLAS di-Higgs studies

$$
E_T^{miss} centrality = \frac{(x+y)^2}{\sqrt{x^2+y^2}}
$$

$$
x=\frac{\sin(\phi_{MET}-\phi_{\tau})}{\sin(\phi_{\ell}-\phi_{\tau})}
$$

$$
y=\frac{\sin(\phi_\ell-\phi_{MET})}{\sin(\phi_\ell-\phi_\tau)}
$$

GNN improved performance

Additional di-higgs constraints

- Adding m_hh and dphi_hh helps to further improve performance
- Possibility to not use these variables in the inputs to the GNN but use only for differential cross section measurements

 the network is good enough without having to use the di-higgs system as constrain $\frac{1}{\log 1}$ and $\frac{1}{\log 1}$ a

Calculating significance

Calculate signal significance in NNoutput bins:

 $Z = N_s / \sqrt{N_b + (N_b \sigma_b)^2}$

with a signal and background scaled to 30/ab

Next step is to compare with previous BDT study and HH+jet study (Add per-bin significance in quadrature to get final estimate)

> Old BDT study: Significance $Z = 5.7\sigma$ for $\kappa \lambda = 1$: $(2.9σ b⁻ b⁻ t_τh, 4.9σ b⁻ b⁻ t_τh)$

Z values for individual bins $10 -$ 8 6 4 2 Ω 0.2 0.4 0.6 0.8 0.0 1.0

Summary

- First estimate of sensitivity show a significance similar to BDT-based results
	- Vanilla GNN tested so far... full optimisation is ongoing
- Limited by MC statistics, so next steps is to evaluate sensitivity with full stat ttbar and add fully hadronic channel
- Explore the had-had channel
	- How should we treat fakes?
- Once the GNN are finalised, define the full analysis strategy
	- Differential cross-section?
	- \circ k lambda fit?

BACKUP

LOSS AND ACCURACY – EDITING GNN PARAMETERS

LOSS AND ACCURACY - ADDING COMPLEX FEATURES

18

OUTPUT DISTRIBUTIONS – GNN PARAMETERS

Test 1 Test 2: hidden channels =

Test 3: Extra layer

 0.5

 0.6

background

 0.8

signal

OUTPUT DISTRIBUTIONS

OUTPUT DISTRIBUTIONS

Test 12: +dpT Test 13: + transverse mass Test 14: + mhh

 10^{1}

 $10⁰$

 10^{-1} 0.0

Frequency Density

ROC CURVE

ROC CURVE

FEATURE LEARNING

- Cut data above and below GNN score of 0.7.
- Plotted complex variables for each iteration.
- What GNN gives high and low probabilities gives indication of how and what it is learning.

INVARIANT MASS OF B-JETS

INVARIANT MASS OF B-JETS

DISTANCE BETWEEN B-JETS

INVARIANT MASS OF LEPTONS

DISTANCE BETWEEN LEPTONS

CENTRALITY OF MET

DIFFERENCE IN PT VALUES (LEPTONS)

DIFFERENCE IN PT VALUES (LEPTONS)

Test 12: +dpT Test 13: +transverse mass Test 14: +mhh

TRANSVERSE MASS

TRANSVERSE MASS

35

30

 $\sum_{n=1}^{1} \frac{1}{2}$

10

35

 $30[°]$

 $\sum_{n=1}^{\infty}$

10

 $8\frac{1}{0}$ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 transverse mass Test 15: + dPhi_hh

INVARIANT MASS OF TWO HIGGS

INVARIANT MASS OF TWO HIGGS

Test 12: +dpT Test 13: + transverse mass Test 14: + mhh

Test $15: + dP$ hi_hh $_{37}$

DIFFERENCE IN PHI OF TWO HIGGS

DIFFERENCE IN PHI OF TWO HIGGS

Test 12: +dpT Test 13: + transverse mass Test 14: + mhh

dPhi_{hh}

 $Test 15: + dPhi₁$ hh $_{39}$