

Preliminary mechanical design of the large aperture HTS superconducting dipoles for the accelerator ring of the Muon Collider

T. Maiello^{1,4,5}, L. Alfonso¹, L. Balconi^{2,6}, A. Bersani¹, L. Bottura⁴, B. Caiffi¹, S. Fabbri⁴, S. Farinon¹, A. Gagno^{1,5}, F. Levi¹, F. Mariani^{2,6}, S. Mariotto^{2,3}, D. Novelli^{1,6}, A. Pampaloni¹, D. Rinaldoni⁴, C. Santini², S. Sorti^{2,3}, M. Statera², G. Vernassa²

¹ INFN – Genova, ² INFN LASA – Milano, ³ University of Milan, ⁴ CERN, ⁵ Università degli Studi di Genova, ⁶ Sapienza Università di Roma

REQUIREMENTS FOR THE SC DIPOLES

Main characteristics:

- Open midplane dipole to avoid deposition of the radiation from muon decay
 - 10 T of central field
 - Rectangular aperture of 100 mm x 30 mm

MECHANICAL PERFORMANCE

CERN

Lorentz forces effect evaluation:

This very simple model has the aim of **evaluate** the **stress** associated to the **Lorentz forces**, **not** for the **dimensioning** of the mechanical structure.

- Infinitely rigid structure.
- Homogenous material for racetracks:
 - $E = 150 GPa^{-1}$
 - v = 0.3
 - Frictionless system.

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011

CERN

JON Collider

Lorentz forces effect evaluation:

This very simple model has the aim of **evaluate** the **stress** associated to the **Lorentz forces**, **not** for the **dimensioning** of the mechanical structure.

- Infinitely rigid structure.
- Homogenous material for racetracks:
 - $E = 150 GPa^{-1}$
 - v = 0.3
 - Frictionless system.

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011

STRESS MANAGEMENT STRATEGY

3 ALIGNED

CERN

Racetrack

Lorentz forces effect evaluation:

This very simple model has the aim of **evaluate** the **stress** associated to the **Lorentz forces**, **not** for the **dimensioning** of the mechanical structure.

- Infinitely rigid structure.
- Homogenous material for racetracks:
 - $E = 150 GPa^{-1}$
 - v = 0.3

 $F_v [kN/m]$

• Frictionless system.

 $F_{x}[kN/m]$

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011

Peak σ_{VM} [MPa]

3 Aligned

and the second s

2 ALIGNED

CERN

Racetrack

1

2

3

tot

Lorentz forces effect evaluation:

This very simple model has the aim of **evaluate** the **stress** associated to the **Lorentz forces**, **not** for the **dimensioning** of the mechanical structure.

- Infinitely rigid structure.
- Homogenous material for racetracks:
 - $E = 150 GPa^{-1}$
 - v = 0.3

 $F_v [kN/m]$

-2878

142

-1525

-1081

Frictionless system.

53

-144

-323

 $F_{kN/m}$

4918

524

338

1140

949

798

1169

		N cond				N rt		Ν	l cond
the the	2	52		12		3			99
		39				2			171
[Pa]									
0									
51		43				1			167
9	_								_
	31054	.108E+08	.216E+08	.324E+08	.431E+08	.539E+08	.647E+08	.755E+08	.898E+08

 σ_{VM} [MPa]

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011

Peak σ_{VM} [N

71

61

90

2 Aligned

and the second second

O ALIGNED

N cond

51

43

N rt

3

2

Lorentz forces effect evaluation:

This very simple model has the aim of **evaluate** the stress associated to the Lorentz forces, not for the dimensioning of the mechanical structure.

- Infinitely **rigid** structure.
- Homogenous material for racetracks:
 - $E = 150 GPa^{-1}$
 - v = 0.3

			Frict	iomess	system	•									
Rac	etrack	F _x [kN/m]		F _y [kN/m]		Peak σ_{VM} [MPa]									
	1	961	532	48	107	72	72								
	2	893	529	-209	-1547	69	69		44			1			219
	3	1044	1013	-290	-942	80	79								_
i	tot	4972		-2833		/		32852.1	.965E+07	.193E+08	.289E+08	.385E+08 .481E+08	.577E+08	.673E+08	.802E+08

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011

167

155

Aligned

MInternational UON Collider Collaboration

Thanks for your attention

T. Maiello^{1,4,5}, L. Alfonso¹, L. Balconi^{2,6}, A. Bersani¹, L. Bottura⁴, B. Caiffi¹, S. Fabbri⁴, S. Farinon¹, A. Gagno^{1,5}, F. Levi¹, F. Mariani^{2,6}, S. Mariotto^{2,3}, D. Novelli^{1,6}, A. Pampaloni¹, D. Rinaldoni⁴, C. Santini², S. Sorti^{2,3}, M. Statera², G. Vernassa²

¹ INFN – Genova, ² INFN LASA – Milano, ³ University of Milan, ⁴ CERN, ⁵ Università degli Studi di Genova, ⁶ Sapienza Università di Roma

Very preliminary mechanical concept:

- SS both inside and outside of the racetrack.
- Threads to convey the preload from outside.

CASE

CERN

3 ALIGNED

159

160

To get an idea of what happens to the mechanics using E = 174 GPa a test was done and the variation of the values is so small that with the precision shown in the tables the numbers do not change 45 45

¹ Value taken from "Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T" https://iopscience.iop.org/article/10.1088/0953-2048/28/4/045011