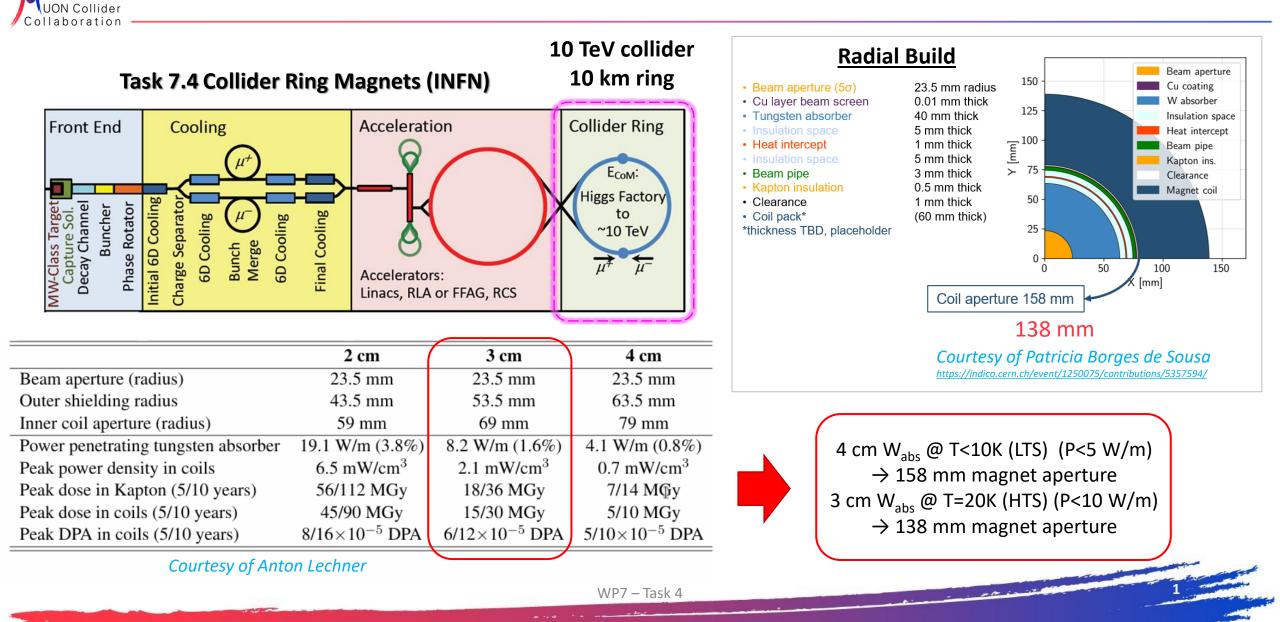


Collider Magnet Systems Cost Estimate


B. Caiffi², A. Bersani², S. Farinon², S. Mariotto³,
D. Novelli^{1,2}, A. Pampaloni², T. Salmi⁴, L. Bottura⁵, ...

¹Sapienza University of Rome, ²INFN – Genoa, ³INFN – Milan, ⁴Tampere University, ⁵CERN

MAGNET REQUIREMENTS

International

COST MODEL

- All of the second secon
- Optimization of the cross section still ongoing.
- Cost estimate performed on a simplified geometry with a <u>sector coil</u> dipole, iron and steel structure modelled as circular crowns.
- R _{bore}, w_{coil}, w_{iron} and w_{struct} optimized to fulfill beam optics requirements, margin on the load line, acceptable stress on the conductor and effectiveness of the quench protection [<u>ref</u>])

 $C_{tot} = 400 \text{ kEUR/m} (\text{FCC-hh 175 kEUR/m} [ref])$

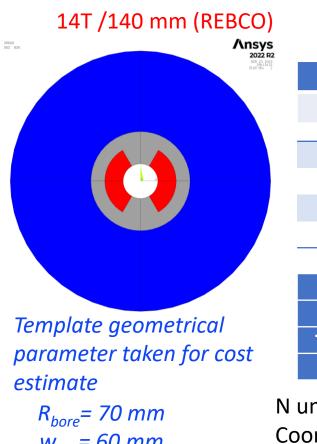
 $C_{assembly} = 20 \text{ kEUR/m} (as LHC)$

 $C_{mat} = \sum_{i} C_{i} \rho_{i} A_{i}$ where i = coil, structures, iron

 $\rho_{Strucutres} = \rho_{iron} = 7800 \ kg/m^3$ $C_{Structures} = 10 \ EUR/kg \ (D2 \ HL-LHC \ as \ benchmark)$ $C_{iron} = 8 \ EUR/kg \ (D2 \ HL-LHC \ as \ benchmark)$ $\rho_{coil} = 8000 \ kg/m^3$

Material	C _{SC}	
NbTi	330 EUR/kg	Esca
Nb ₃ Sn	2000 EUR/kg	The
aspirational value	700 EUR/kg	Corr
ReBCO	8000 EUR/kg	The
aspirational value	2500 EUR/kg	A rea

scalated price in 2016 The right value in 2016 Corresponds to the ITER target The value of today (2023) A realistic projection for the next years


WP7 – Task 4

COST ESTIMATE 10 TEV

Dipoles of the arc for the series production

(quadrupoles and IR not included)

 w_{coil} = 60 mm w_{struct} = 30 mm w_{iron} = 300 mm

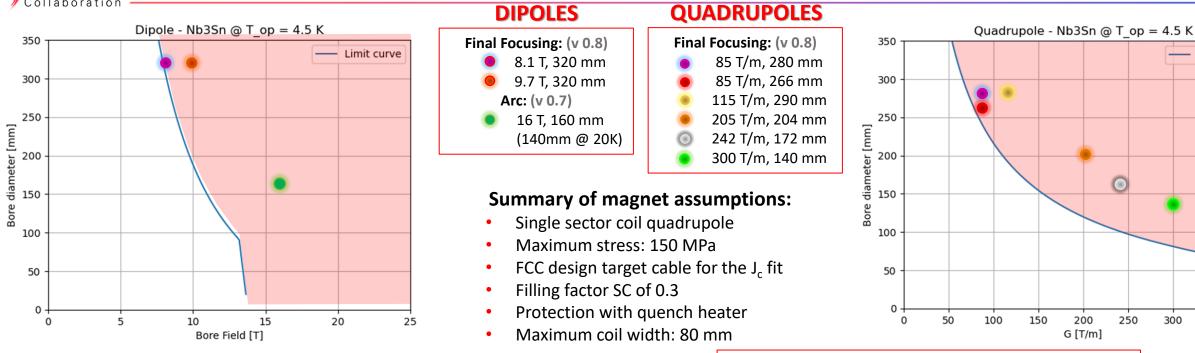
International UON Collider

y 5 22 R2 21 2023				*50.0	$(1 \land 1 \land 2 \land 1 \land 2 \land 1 \land 1 \land 1 \land 1 \land 1 \land $
9:15:15 90. 1	€/kg iron	€/kg struct	€/kg conducto	r ጥ	/kAm: 1/3 of today prize (150€/kAm) based on projection of ref
	8	10	2500		lodyk and C. Larbalestier, Science, 2023
	Iron [Kg/m]	Struct	ure [kg/m]	Coil [kg/m]	
	4560		213	130	
	Iron cost [k€/m]	Structure	e cost [k€/m]	Coil cost [k€/m]	
_	36		2.1	322	Tot. Material = $(C_{ins} + C_{ins})^* f_{ins}$
_					Tot. Material = $(C_{iron} + C_{struct}) * f_{struct}$ $f_{struct} = 1.5$
	Tot. Material k€/	m	56	14%	struct - 1.5
	Tot. Assembly k€/	/m	20	5%	
	Tot. Conductor k€	/m	322	81%	100 k€/magnet (~2FTE)
	Tot. Cost k€/m		400		
Мı	ınits=1200, Lengtl	h= 5m			
	, 0				
00	ordination, design	i and follow-u	p: 4 FIE X 4 y	ears= 16 FIE-yea	ars (1.6 ivieur)
TC	TAL COST: 2	.4 GEur (:	19.0% ov	erall magne	ets budget)

Disclaimer: cryostat, specific tooling, W absorber not taken into account

WP7 – Task 4

A-B PLOTS FOR NB₃SN



Limit curve

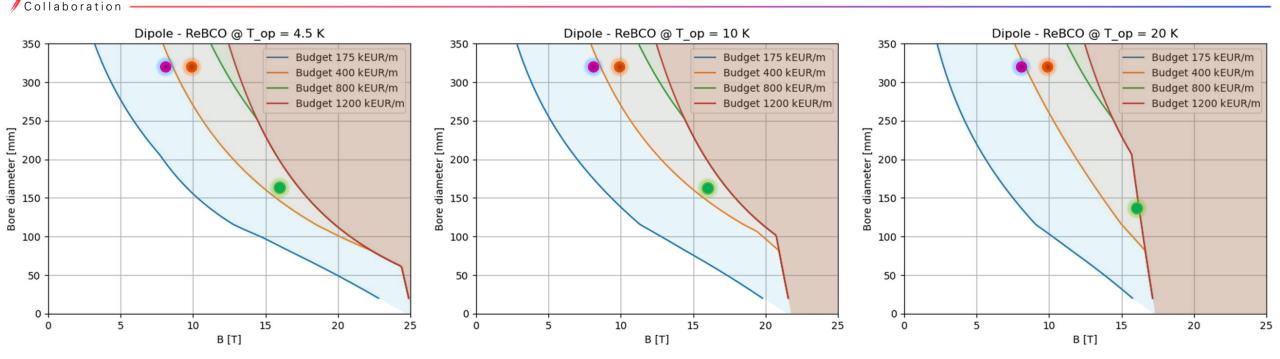
300

350

400

Summary of cost assumptions:

UON Collider


- We use the Nb3Sn aspirational cost 700 EUR/kg (from FCC)
 - Today's price is around 2500 EUR/kg
- The starting budget of 400 kEUR/m is roughly double the estimate given by the FCC cost model for each magnet.
 - In principle, we can assume a higher budget for each magnet than FCC because we have a smaller circumference and less magnets.
- Cryogenic, protection and shielding costs are not taken into account.

- The white area is the allowed design space where all constraints of the magnet are satisfied.
- The **limit curve** is an ensemble of the many technological limitations taken into consideration to make the magnet design realistic [ref].
- For the 10 TeV and 10 km collider, Nb₃Sn falls short of required performance.

Nb3Sn not suitable technology for the 10 TeV collider

A-B PLOTS FOR **HTS** DIPOLE

WP7 – Task 4

Summary of cost assumptions:

International UON Collider

- We use the ReBCO's aspirational cost 2500 EUR/kg
 - Today's price is around 8000 EUR/kg
- The starting budget of 175 kEUR/m for each magnet is taken from the FCC cost model
 - We can assume a higher budget than FCC because we have a smaller circumference and less magnets.
- Cryogenic, protection and shielding costs are not taken into account.

Summary of assumptions:

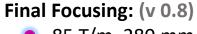
- Single sector coil dipole
- Maximum stress: 400 MPa
- Fujikura Tape for the J_c fit
- Filling factor SC of 0.011
- Non-insulated or Metal-insulated cable
- Maximum coil width: 80 mm

A-B PLOTS FOR HTS QUADRUPOLE

400

Quadrupole - ReBCO @ T op = 4.5 K Quadrupole - ReBCO @ T op = 10 K Quadrupole - ReBCO @ T op = 20 K 350 350 350 Budget 175 kEUR/m Budget 175 kEUR/m Budget 175 kEUR/m Budget 400 kEUR/m Budget 400 kEUR/m Budget 400 kEUR/m 300 300 300 Budget 800 kEUR/m Budget 800 kEUR/m Budget 800 kEUR/m Budget 1200 kEUR/m Budget 1200 kEUR/m Budget 1200 kEUR/m 250 250 250 Bore diameter [mm] diameter [mm] diameter [mm] 200 200 200 150 150 150 Bore Bore 100 100 100 50 50 50 0 150 250 150 250 0 50 100 200 250 300 350 400 50 100 150 200 300 350 400 50 100 200 300 350 0 Gradient [T/m] Gradient [T/m] Gradient [T/m]

WP7 – Task 4


Summary of cost assumptions:

International UON Collider Collaboration

- We use the ReBCO's aspirational cost 2500 EUR/kg
 - Today's price is around 8000 EUR/kg
- The starting budget of 175 kEUR/m for each magnet is taken from the FCC cost model
 - We can assume a higher budget than FCC because we have a smaller circumference and less magnets.
- Cryogenic, protection and shielding costs are not taken into account.

Summary of assumptions:

- Single sector coil quadrupole
- Maximum stress: 400 MPa
- Fujikura Tape for the J_c fit
- Filling factor SC of 0.011
- Non-insulated or Metal-insulated cable
- Maximum coil width: 80 mm

- 🕨 85 T/m, 280 mm
- 85 T/m, 266 mm
- 🧕 115 T/m, 290 mm
- 🧕 205 T/m, 204 mm
- 💿 242 T/m, 172 mm
- 👂 300 T/m, 140 mm

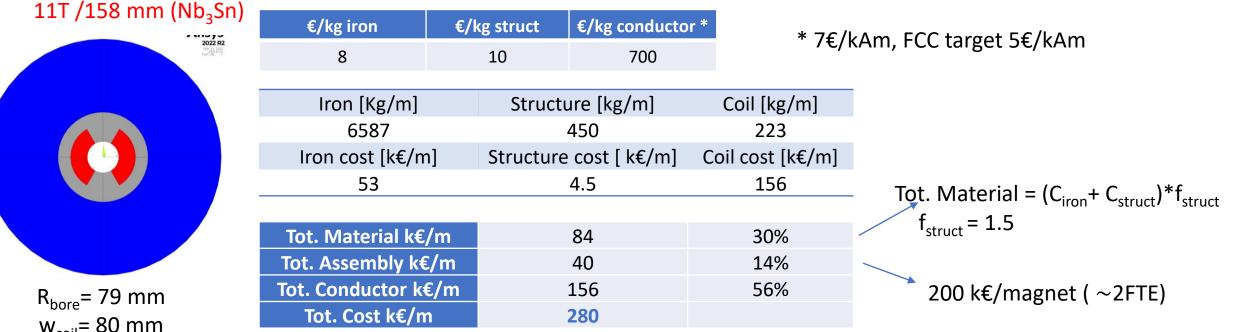
FINAL CONSIDERATION

- With a proper revision of the optics , 400 kEur/m can be considered a credible maximum budget for the ARC dipoles and quadrupoles (assuming as baseline HTS @ 20 K).
- For the IR magnets, a budget of 800 kEur/m must be taken into account, together with a lower working temperature (T<10 K), which can be estimated more accurately only when the revised optics will be available.

MInternational UON Collider Collaboration

Thank you for your attention

0


at in the

COST ESTIMATE (3TEV)

Dipoles of the arc for the series production (quadrupoles and IR not included)

 $w_{coil} = 80 \text{ mm}$ $w_{struct} = 50 \text{ mm}$ $w_{iron} = 350 \text{ mm}$

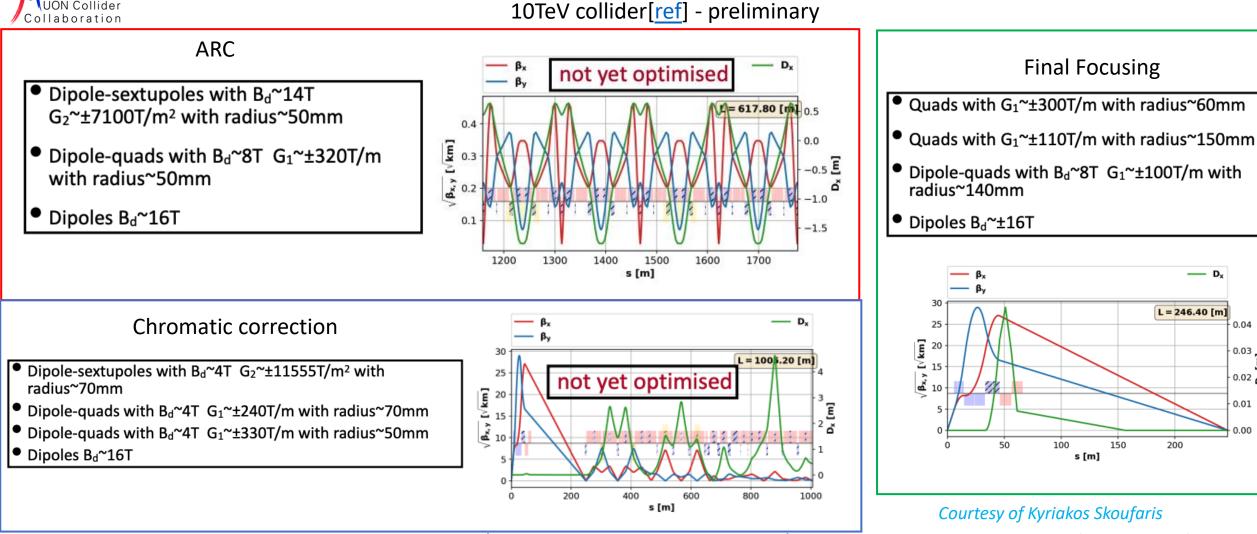
Coordination, design and follow-up: 4 FTE x 4 years= 16 FTE-years (1.6 MEur)

TOTAL COST: 6.7% O.M.B. (overall magnets budget)

Disclaimer: cryostat, specific tooling (e.g. oven for thermal treatment of Nb3Sn) W absorber not taken into account

WP7 – Task 4

MAGNET REQUIREMENTS FOR LATTICE


0.04

^{0.03} Ξ

0.02

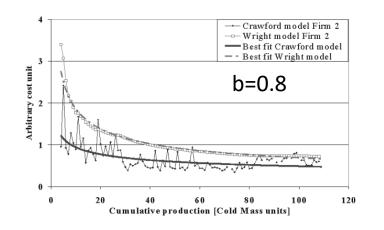
0.01

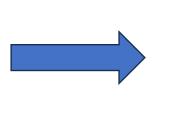
0.00

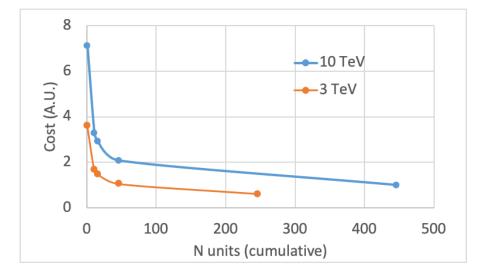
Several magnet typology needed (dip, quad, combined, etc), but optimization & definition of requirements still on going

COST REDUCTION LEARNING CURVE

How to rescale for the other steps (pre-series, prototypes, short models, demonstrators)?


Learning curve


Wright's law


 $C_x = C_1 x^{\log_2(b)}$

b: learning percentage

Applied to LHC magnets works perfectly! [ref]

	3 Te	V	10 TeV		
	N units (cumulative)	cost (A.U.*)	N units (cumulative)	cost (A.U.*)	
demostrator	1	3.36	1	7.13	
short model	11	1.55	11	3.29	
proto	16	1.38	16	2.92	
pre series	46	0.98	46	2.08	
series	246	0.57	446	1.00	

*w.r.t. cost of 10 TeV series magnet

COST ESTIMATE (3TEV)

Pre-series

Iron cost [k	€/m]	Structure cost [k€/m] Coi	l cost [k€/m]
91		8		269
Tot. Material k€/m		144		30%
Tot. Assembly	y k€/m	69		14%
Tot. Conductor k€/m		269		56%
Tot. Cost k€/m		481		
N units	length [m] N years	cost FTE-y [k€]	Total cost [o.m.b*]
90	5	4 160		1.70%

Short Models

Iron cost [l	k€/m]	Structure cost [k€/m]			Coil cost [k€/m]		
143			12			425	
Tot. Material k€/m			227			30%	
Tot. Assemb	Tot. Assembly k€/m		109			14%	
Tot. Conduct	Tot. Conductor k€/m		425			56%	
Tot. Cost k€/m			761				
N units	length	[m]	N years	cost l [k	_	Total cost [o.m.b*]	
10	1.5		6	30	00	0.11%	
*overall magnets bugdet							

		Pr	ototypes				
Iron cost [k	Iron cost [k€/m]		Structure cost [k€/m]			Coil cost [k€/m]	
127			11			377	
Tot. Material	Tot. Material k€/m		201		30%		
Tot. Assembly	/ k€/m	96			14%		
Tot. Conducto	r k€/m	377			56%		
Tot. Cost k	€/m		674				
N units	length [[m]	N years	cost [k	FTE-y €]	Total cost [o.m.b*]	
5	5	5 20		00 0.15%			

Demonstrators

_									
	Iron cost [k	Iron cost [k€/m]		Structure cost [k€/m]			Coil cost [k€/m]		
	310	310		27		919			
	Tot. Materia	Tot. Material k€/m		491		30%			
	Tot. Assembly k€/m		235		14%				
	Tot. Conduct	Tot. Conductor k€/m		919		56%			
	Tot. Cost k	Tot. Cost k€/m		1645					
	N units	N units length		N years	cost I [k	_	Total cost [o.m.b*]		
	1	1.5		4	120	000	0.03%		
– Task 4				in in			13		

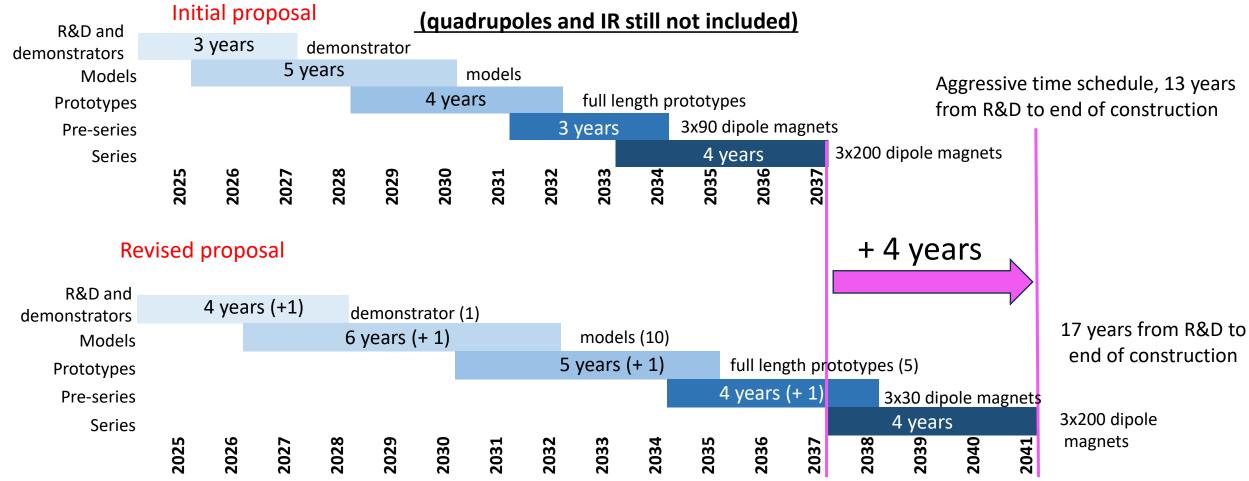
Dratatypac

COST ESTIMATE (10TEV)

Prototypes

Iron cost [k€/m]	Structure cost [k	€/m] Coil	cost [k€/m]			
75	4.3		633			
Tot. Material k€/m	116		15%			
Tot. Assembly k€/m	42		5%			
Tot. Conductor k€/m	632		80%			
Tot. Cost k€/m	790					
N units length	[m] N years	cost FTE-y [k€]	Total cost [o.m.b*]			
90 5	4	1600	2.80%			
S	nort Models					
Iron cost [k€/m]	Structure cost [k	€/m] Coil	cost [k€/m]			
119	7		1000			
Tot. Material k€/m	183		15%			
Tot. Assembly k€/m	66		5%			
Tot. Conductor k€/m	1000		80%			
Tot. Cost k€/m	1250					
N units length	[m] N years	cost FTE-y [k€]	Total cost [o.m.b*]			
10 1.5	8	4000	0.18%			
*overall magnets bugdet WP7						

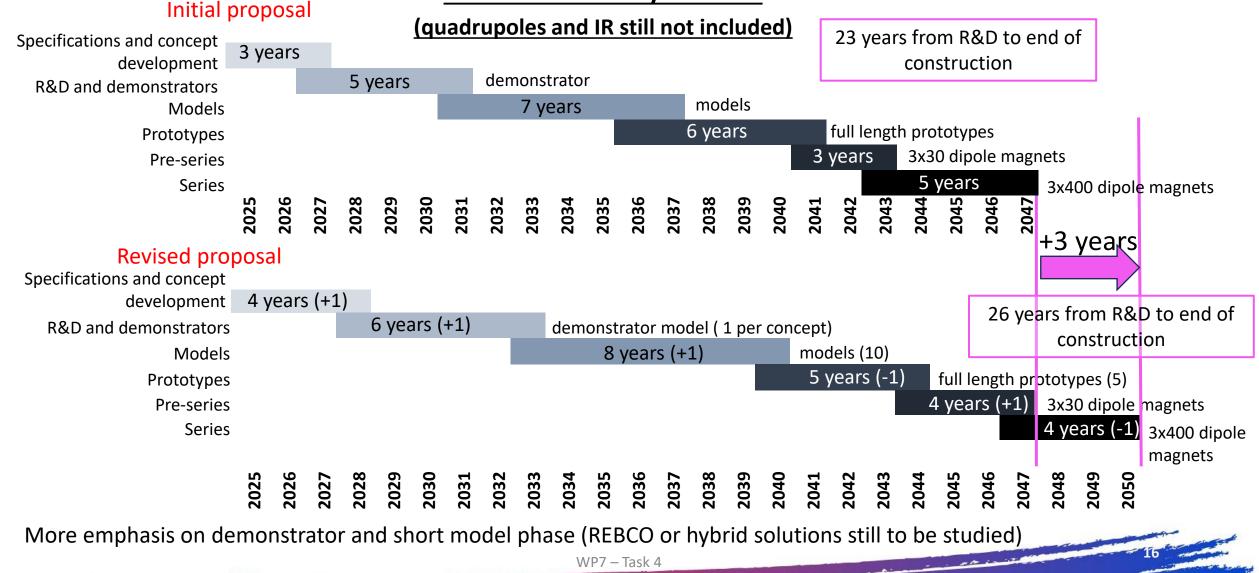
Pre-series


	Iron cost [k	Iron cost [k€/m]		Structure cost [k€/m]			Coil cost [k€/m]	
	105	105			6.1			
	Tot. Materia	k€/m	163				15%	
	Tot. Assembly	y k€/m		58			5%	
	Tot. Conducto	or k€/m		888			80%	
	Tot. Cost k	€/m		1109				
	N units length		[m]	N years	cost FTE-y [k€]		Total cost [o.m.b*]	
	5	5		5	20	00	0.24%	
	Demonstrators							
	Iron cost [k	€/m]	Structure cost [k€/m]		Coil	cost [k€/m]		
_	257		15		2168			
	Tot. Materia	k€/m	397		15%			
	Tot. Assembly	y k€/m	143		5%			
	Tot. Conductor k€/m		2168		80%			
	Tot. Cost k€/m			2708				
	N units length		[m]	N years	cost l [k:	-ΤΕ-y €]	Total cost [o.m.b*]	
	1	1.5		6	240	000	0.05%	
– Task	4			· · · · · · · ····		and a	14	

TENTATIVE SCHEDULE (3 TEV COLLIDER)

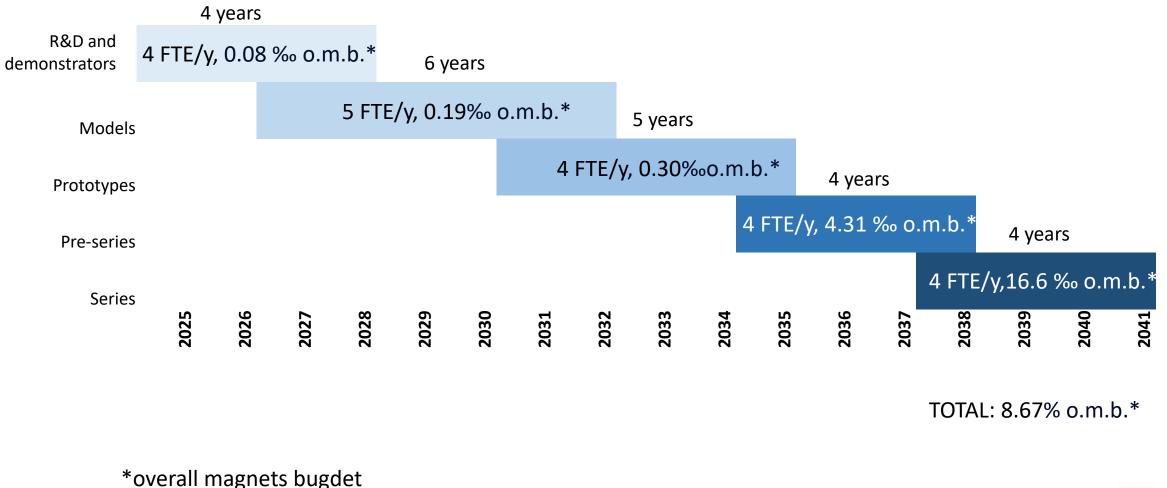
ARC DIPOLES 11T/158mm

WP7 – Task 4


- Nb3Sn demonstrator program \sim 6 years
- LHC: 13 short models in 11 years, 6 prototypes in 4 years, pre-series 4 years, series 4 years

TENTATIVE SCHEDULE (10 TEV COLLIDER)

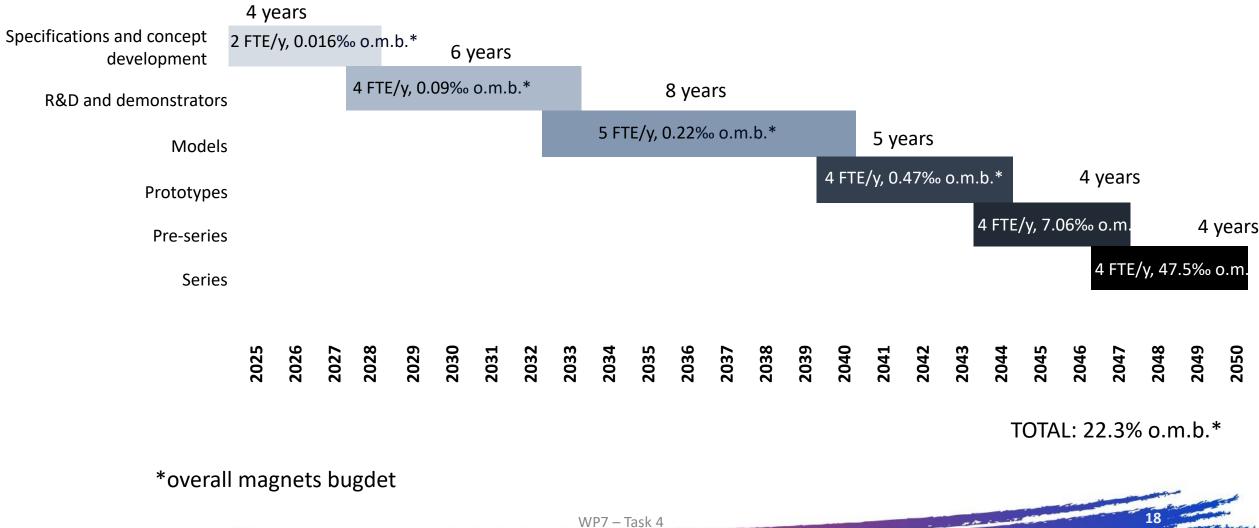
ARC DIPOLES 15T/138 mm



TENTATIVE SCHEDULE (3 TEV COLLIDER)

ARC DIPOLES 11T/150mm

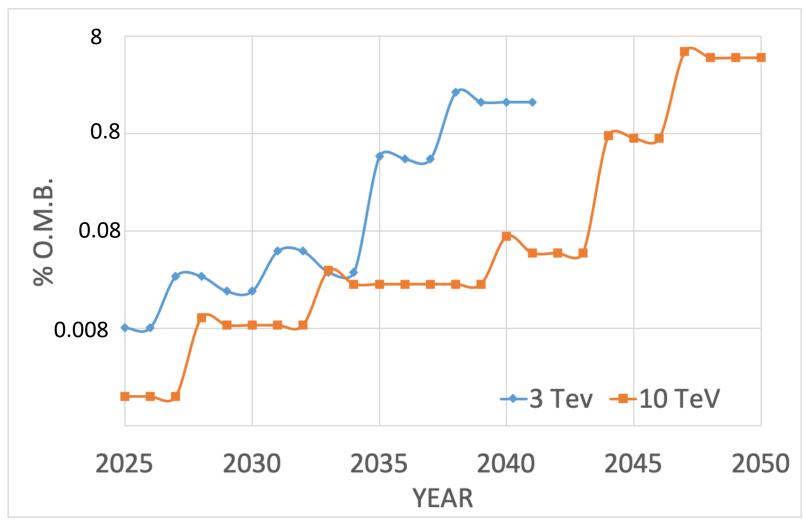
(quadrupoles and IR still not included)



TENTATIVE SCHEDULE (10 TEV COLLIDER)

ARC DIPOLES 15T/150 mm

(quadrupoles and IR still not included)



COST PROFILE

19

*overall magnets bugdet

20

at in the