

Update on Long-lived Particle Study – Tracking Differences Between MuCol Software Versions

Mark Larson, Tate Flicker, Kane Huang, Leo Rozanov, Ben Rosser, Karri DiPetrillo The University of Chicago October 15, 2024

Motivation & Project Goals

- Want to demonstrate feasibility of **direct** and **indirect detection** of **long-lived particles** at a 10 TeV muon collider, especially **in presence of BIB**
 - Karri's <u>talk about experimental challenges of LLPs at muon collider</u>
 - Use baseline <u>GMSB model</u> to study $\tilde{\tau}'s$, allowing for indirect & direct detection
- Develop reconstruction methods to maximize efficiency reconstructing *τ* and displaced tracks, while minimizing hits & tracks from BIB
 - Provide efficiencies/sensitivities given varying levels of signal acceptance & BIB background rejection based on **timing windows, track requirements**
- This talk is an update w.r.t. <u>previous talk given by</u> <u>Leo Rozanov on June 4th</u>

Aim to reconstruct $\tilde{\tau} \& \tau$ decay products (e, μ, π)

Signal Generation & Simulation

• Generate signal points with $m_{\tilde{\tau}}$ between 1, 4.5 TeV, and mean decay time between 0.05 and 10 ns ($c\tau$ between 15, 3000 mm) using MadGraph & Pythia

• Then use DD4HEP & GEANT4 to simulate detector response, Marlin & Gaudi to digitize detector response, reconstruct physics objects

Note: using 3 TeV detector design

Displacement distributions of charged τ decay products given mass and mean decay length of $\tilde{\tau}$

Timing Windows

- For higher mass signal points ($m_{\tilde{\tau}} \ge 2.5 \text{ TeV}$) $\tilde{\tau}$ slowly moving
- Tracker hits from $\tilde{\tau}, \tau$ decay products often fall outside nominal timing windows, resulting in worsened tracking efficiency

Detector	Min. t_{hit} [ns]	$\mathop{\rm Max}_{(nominal)} t_{hit} [ns]$	$\max_{\text{(extended)}} t_{hit} \text{[ns]}$
Vertex Detector	-0.09	0.15	0.32
Inner Tracker	-0.18	0.30	0.64
Outer Tracker	-0.18	0.30	0.64

- Have defined tight, medium, and loose timing windows based on acceptance of $\tilde{\tau}, \tau$ decay products

Displaced Tracking Configuration

• To allow for reconstruction of displaced tracks, run two passes of ACTS track reconstruction based off <u>methodology from Federico Meloni</u>

Parameter	1st Tracking Pass	2nd Tracking Pass
Layers for Seed Finding	Vertex Detector Barrel & Endcap	OT Barrel & Endcap, 3rd IT Layer
Collision Region	1 mm	100 mm
Maximum Track d_0	5 mm	150 mm
Seed Finding <i>r_{max}</i>	150 mm	1500 mm
Minimum p_T	$0.5~{ m GeV}$	$1~{ m GeV}$

• Will later incorporate max. χ^2_{red} and min. N_{hits} for both passes

Different Software Versions

- Originally setup modified tracking configuration and obtained results using v2.8 of the muon collider software stack
- In August migrated to v2.9, integrating changes to k4run Python steering files
- Resulted in differences in tracking efficiency, despite using the same parameters in the steering file
 - Would like to understand these differences and whether they could be mitigated
- To process BIB overlayed samples (for which reconstruction takes especially long) developed method of job submission on Open Science Grid (OSG)
 - OSG has <u>dedicated resources for muon collider studies</u>

Analysis Setup

- pyLCIO analysis script & hit-based matching using <u>lcRelation</u> matches reconstructed tracks to $\tilde{\tau}, \tau$ decay products (displaced tracks)
- Define acceptance as:
 - **Prompt:** Decays past last VXD layer
 - **Displaced:** Produced within final IT layer, decays outside final OT layer
 - Note: acceptance not dependent on timing information
- Analysis level selections:
 - **Prompt:** \geq 7 VXD barrel hits
 - **Displaced:** ≥ 4 IT hits + OT hits
- Fake tracks defined by:
 - Multiple unrelated Monte Carlo particles (MCPs) matched to same track
 - Track w/o any related MCPs

Changes in Displaced Tracking Eff.

Note: all results shown w/o BIB overlay, for 1000 events

Sample	Eff. (v2.8)	Eff. (v2.9)	AxE. (v2.8)	AxE. (v2.9)	Fake Rate (v2.8)	Fake Rate (v2.9)
1 TeV, 0.1 ns	61.5%	59.8%	49.3%	47.8%	0.086	0.116
1 TeV, 1 ns	48.0%	40.5%	11.2%	9.7%	0.198	0.178
2.5 TeV, 0.1 ns	63.3%	62.1%	53.2%	52.3%	0.081	0.100
2.5 TeV, 1 ns	38.3%	30.1%	19.4%	15.4%	0.054	0.048
4 TeV, 0.1 ns	63.3%	64.2%	51.3%	52.1%	0.095	0.118
4 TeV, 1 ns	33.5%	31.8%	24.6%	23.4%	0.019	0.028

Tracking efficiency generally worsened, especially for higher displacement samples

Mark Larson

Changes in $\tilde{\tau}$ Tracking Eff.

Sample	Eff. (v2.8)	Eff. (v2.9)	AxE. (v2.8)	AxE. (v2.9)
1 TeV, 1 ns	82.2%	82.1%	76.9%	76.7%
2.5 TeV, 1 ns	89.0%	88.9%	72.2%	72.3%
2.5 TeV, 10 ns	88.2%	87.6%	85.4%	85.2%
4 TeV, 1 ns	84.0%	83.3%	50.5%	49.6%
4 TeV, 10 ns	84.8%	84.0%	80.3%	79.5%
4.5 TeV, 10 ns	11.2%	11.1%	10.4%	10.3%

Efficiencies largely unchanged for prompt $\tilde{\tau}$ tracks

Displaced Track d_0

Note: all plots using 1000 signal events without BIB overlay

Displaced Track χ^2_{red}

2.5 TeV, 1 ns

 $1~{\rm TeV},\,1~{\rm ns}$

Displaced Track N_{hits}

2.5 TeV, 1 ns

1 TeV, 1 ns

Displaced Track p_T

2.5 TeV, $1~\mathrm{ns}$

1 TeV, 1 ns

Displaced Tracking Efficiency vs. p_T

Displaced Tracking Efficiency vs. d_0

Mark Larson

Displaced Tracking Efficiency vs. r_{xy}

1 TeV, 1 ns

2.5 TeV, 1 ns

Displaced Tracking Efficiency vs. η

2.5 TeV, $1~\mathrm{ns}$

1 TeV, 1 ns

Prelim. BIB Results

- Using job submission setup, processed 100 event 10% BIB overlayed samples
- Tested reco. level cuts for 2nd tracking pass:
 - $\chi^2_{red} < 3$, $p_T > 1$ GeV, ≥ 1 IT hits & ≥ 3 OT hits

		1 TeV 1 ns	$2.5\mathrm{TeV}1\mathrm{ns}$
w/o BIB	Disp. Tracking Eff.	40.5%	30.1%
	$ ilde{ au}$ Tracking Eff.	82.1%	88.9%
	Fake Trk. / Ev.	0.178	0.048
10% BIB	Disp. Tracking Eff.	22.2%	5.7%
	$ ilde{ au}$ Tracking Eff.	67.0%	67.8%
	Fake Trk. / Ev.	726.1	740.1
10% BIB + Cuts	Disp. Tracking Eff.	19.2%	3.3%
	$ ilde{ au}$ Tracking Eff.	59.1%	59.4%
	Fake Trk. / Ev.	1.43	1.22

Looking for Feedback

- Could changes to ACTS in v2.9 be causing drop in displaced tracking efficiency?
 - Ideas to mitigate this?
- Suggestions for improving displaced track reconstruction in presence of BIB?
 - Trying ΔR -based matching to see if this improves matching to τ decay products
- Have observed poor p_T resolution for prompt & displaced tracks
 - Could potentially limit effectiveness of p_T as BIB rejection handle
- Link to <u>reco.</u> and <u>digi.</u> steering files used

```
MyCKFTracking_LLP.Parameters = {
    "CKF_Chi2CutOff": ["10"],
    "CKF_NumMeasurementsCutOff": ["1"],
    "MatFile": [the_args.MatFile],
    "PropagateBackward": ["False"],
    "RunCKF": ["True"],
    "SeedFinding CollisionRegion": ["100"],
    "SeedFinding DeltaRMax": ["350"],
    "SeedFinding DeltaRMin": ["5"],
    "SeedFinding ImpactMax": ["150"],
    "SeedFinding MinPt": ["1000"],
    "SeedFinding RMax": ["1500"],
    "SeedFinding ZMax": ["2200"],
    "SeedFinding RadLengthPerSeed": ["0.1"],
    "SeedFinding_SigmaScattering": ["50"],
    "SeedingLayers": [
        "23", "2", "23", "4", "23", "6", "23", "8",
        "20", "2",
        "24", "2", "24", "4", "24", "6",
        "25", "2", "25", "4", "25", "6", "25", "8",
        ],
    "TGeoFile": [the args.TGeoFile],
    "SeedCollectionName": ["SeedTracks_LLP"],
    "TrackCollectionName": ["AllTracks_LLP"],
    "TrackerHitCollectionNames": ["SlimmedHitsCollection"]
```

Parameters used for 2nd tracking pass

Conclusions

- Demonstrated high reconstruction efficiency for $\tilde{\tau}'s$, displaced tracks without BIB overlay using modified track reconstruction, extended timing windows
 - Efficiency for more displaced samples decreased migrating from v2.8 → v2.9 of software stack, uncertain of exact causes
 - Demonstrated complementarity of direct and indirect detection methods
- Developed new computing setup on OSG cluster to process BIB overlayed samples in parallel
- Identified reconstruction level cuts for rejecting most BIB fake tracks while accepting most displaced tracks
 - Found significantly reduced displaced tracking efficiency in presence of BIB
 - Potential for tighter analysis level cuts to reject most of remaining BIB fake tracks

Future Work

- Make any modifications to track reconstruction algo. to mitigate decreases in tracking efficiency after version change & BIB overlay
- Producing BIB overlayed results for tight, medium, loose timing windows
 - Continue optimizing reco. level cuts
- Will later give another presentation detailing our physics results:
 - **Prompt** $\tilde{\tau}$'s: extract time-of-flight, mass information
 - **Displaced tracks:** indicate any efficiency with strong BIB rejection, report on any additional computing challenges

Backup

Mark Larson

Displaced Tracking @ 10 TeV Muon Collider

Tracker Geometry

- Barrel tracker consists of:
 - Pixel Vertex Detector with 4 doublet layers
 - 3 Inner Tracker layers
 - 3 Outer Tracker layers
- Provides coverage for displaced tracks up to $R_{xy} \approx 550 \text{ mm}$ for central processes

BIB Challenges

• Presence of BIB results in an average of 500k hits in innermost tracker layer per event, this necessitates using powerful rejection handles to prevent formation of fake tracks

• Additionally, BIB tracks formed will often be formed with low number of hits, poor fit quality, low p_T

Mark Larson

BIB Rejection & Displaced Tracking

- Pointing requirement, track p_T requirements, timing hit acceptance windows, and number of hits to form track requirements all provide powerful BIB rejection
 - Concern is that BIB rejection handles especially pointing requirement, cut on number of hits, and timing windows may also reject long-lived particle signatures

Illustration of how pointing requirement (using doublet layers) rejects BIB

Mark Larson

Fake Track Formation

Computing Setup

- Another challenge introduced by BIB is large file size and long run time when processing BIB events
 - Using 100% BIB yields file sizes of 1 GB / event, reconstruction time of multiple hours per event when keeping / using only tracker information!
 - Necessitates use of running processes in parallel
- To deal with these challenges, migrated setup from local workstation to larger computing cluster, allowing submission of condor jobs
 - Greatly reduces computing time, allowing full study of displaced tracking with signal in presence of 100% BIB

Track $\chi^2_{red}(10\% \text{ bib})$

 χ^2_{red} would provide most powerful rejection handle!

Track p_T (10% bib)

 p_T would provide powerful secondary rejection handle, but should understand calculation of track p_T ...

Mark Larson

Track $N_{hits}(10\% \text{ bib})$

 N_{hits} cut likely should be left as ≥ 4 (need to fix for fake tracks in analysis script)