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Motivation
The HITRIPlus Canted Cosine Theta magnet

Large fringe field region:
Field smoothly changing from 0 to by

particle
trajectory

I Vertical field (T)
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E. De Matteis et al., 2023



Strategy

The fringe field map in PTC

» Describe the field with magnetic field expansion

» Find the appropriate Hamiltonian

» Define a thin fringe field map

» Calculate the effect of the fringe field on p, and p,

» Create a symplectic map that has this effect
(which will induce a displacement in x and y)

» Comparison with SLAC-75 and MAD-8 / MAD-X



Frenet Serret Coordinates

» Unit vectors of the frame

» Position of a particle

Q(t) = Ro(s) + xX(s) + y¥(s)




Magnetic field expansion

The magnetic scalar potential ¢(x, y,s) as general expansion in y

» Magnetic scalar potential

> General expansion in y

d(x,y,s Z(ﬁ,xsy—l

J Laplace equation V2¢ = 0

Gir2 =

1 1
1 T hx <8x ((1 + hx)ax¢i) + 0s (H/v(as¢i))

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Magnetic field expansion

Expansion of the initial functions ¢o(x,s) and ¢1(x,s)

» Two initial functions ¢o(x,s) and ¢1(x, s) can be independently

chosen
o0
do(x,s) Z an(s
n=1

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001
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» Apply the formula to determine ¢,
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Magnetic field expansion

Expansion of the initial functions ¢o(x,s) and ¢1(x,s)

» Two initial functions ¢o(x,s) and ¢1(x, s) can be independently

chosen
o0
do(x,s) Za,, —
n=1

» Apply the formula to determine ¢,

1
P2(x,s) = 1T (3x((1 + hx)0x¢o) + Os (1 I s¢0>>
= H%Zn la"( I+Zn la"(n 2) 7%Zn:02;(5)%+mzn Oan( )7

» Successively determine next ¢; and calculate ¢

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Magnetic field expansion

Relation with the magnetic field B = —V ¢: first terms
‘ 1 X y x2 xy yz
B | & 2 by B by —oahlaamah 2b) bl —ail
B, | b by —b, — ath— a L} —a3 — h(ap — arh — 2b) + bsh' — 3! — ba bty
By | by —bsh+a} by b — ah+ % —hb} + b b 58] 15

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Magnetic field expansion

Relation with the magnetic field B = —V ¢: first terms
‘ 1 X y x? Xy y?
B | & 2 by 2 by —oahlaamah 2b) bl —ail
By | by by —b, —ath—a L —a3 — h(ap — ath — 2b) + beh' — 2! byttt
B.| b —bih+taf b bel? — ah+ % —hbj + b, R
Limit to a straight reference h=0 0. =0
frame with s-independent fields TS T

1 x y x> xy %
Bilan a2 b % by %
b b
By | b1 b —a 3 -a -3

The coefficients a,, b, fall back to the usual multipole expansion
for straight magnets with transverse-only fields

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Fringe field map: the simplest situation



Straight bend with flat pole face

Simplest situation

Px

» Flat pole face
» Vertical field independent of x
» No horizontal field B, =0

— We assume parallel plates with infinite transverse extent

— Field described by a single coéfficient by(s)

— Easiest to describe in straight reference frame

Forest et al., 2006



Straight bend with flat pole face

Simplest situation: fringe field expansion

2

1 X y x? Xy y
B | a a by %3 by —a;—h(sz—a]h;2b2)+bsh’—a,”
By | by by —b, —arh—a & —a3 — h(ay — ah — 2b.) + bh — &/ ,%“’Y
Bs | by —bsh+4 b, boh? — alh+ % —hb, + b LLEN AL



Straight bend with flat pole face

Simplest situation: fringe field expansion

Y
B,
By | bt - 2 =
s by
> Magnetic field
B, =0
- (_1)n 2n
)+ (Qn!b£ (61%
pl2n=1(5) y2n-1 pliley = 94"
Z(2n 1)' &)y 1(s) ds” 1(5)



Numerical example
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2D field simulation

Field expansion
by = % (tanh(s) + 1)




Strategy

The fringe field map in PTC

» Describe the field with magnetic field expansion

» Find the appropriate Hamiltonian

» Define a thin fringe field map

» Calculate the effect of the fringe field on p, and p,

» Create a symplectic map that has this effect
(which will induce a displacement in x and y)

» Comparison with SLAC-75 and MAD-8 / MAD-X



General Hamiltonian

With abuse of notation, we will from now on
consider fields scaled by q/po = 1/Bp

General Hamiltonian for particle in an electromagnetic field

H=" (1+ hx) (\/(1 +0)? = (px—ax)* = (py—a,)* + 35>
Bo
» Curvature h
> 6=(P—Py)/Po
> pr = (E = Eo)/(Poc)
» Vector potentiala, b=V xa



Straight bend with flat pole face

Vector potential and Hamiltonian

» Vector potential A (B =V x A)

i 1 [2n 1]()

n=1
a, =0

a, = —bi(s)x

» Transverse Hamiltonian; h=10

by =0

n

by = bi(s) + 52y G b7(s) v

by = —

so (=17 LLn—1]

n=1 (2n—1)1 “1

(S) y?/v 1

Hr = —\/(1 +6)2 — (P« — ax)? — p2 + bi(s)x

with

o0
Z b (s) y?,
< (2n)!

Forest et al., 2006

o = =

9 by(s)




Strategy

The fringe field map in PTC

» Describe the field with magnetic field expansion

» Find the appropriate Hamiltonian

» Define a thin fringe field map

» Calculate the effect of the fringe field on p, and p,

» Create a symplectic map that has this effect
(which will induce a displacement in x and y)

» Comparison with SLAC-75 and MAD-8 / MAD-X



What are compositional maps and Lie operators?

Definition of compositional maps

» A transfer map of phase space, the type of map used so far, is a
map working on the coordinates F : (q,p) — F(q, p)

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics
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Definition of compositional maps

» A transfer map of phase space, the type of map used so far, is a
map working on the coordinates F : (q,p) — F(q, p)

» To each of these maps, one can associate a compositional map,
denoted with the same name as the map but in curly letters, and
defined as

Fg(s) = g(F(s))
for any function (e.g. maps) of phase space g(q, p)

— A compositional map transforms functions of phase space
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What are compositional maps and Lie operators?

Definition of compositional maps

» A transfer map of phase space, the type of map used so far, is a
map working on the coordinates F : (q,p) — F(q, p)

» To each of these maps, one can associate a compositional map,
denoted with the same name as the map but in curly letters, and
defined as

Fg(s) = &(F(s))
for any function (e.g. maps) of phase space g(q, p)
— A compositional map transforms functions of phase space

» To recover the transfer map, one applies the compositional map to
the identity map g =/

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics



What are compositional maps and Lie operators?

Lie operators are compositional maps

» One can define a Lie operator :f: associated to a function of phase
space f(q,p)

3
of g  Of 9
frg={fg}= ( £ g)
k=1

9k O Opx Dqx

for any function of phase space g(q, p)

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics



What are compositional maps and Lie operators?

Lie operators are compositional maps

» One can define a Lie operator :f: associated to a function of phase
space f(q,p)

of 0 of o
frg={f,g}= ( g g)

3
for any function of phase space g(q, p)

» Lie operators belong to the space of compositional maps

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics



What are compositional maps and Lie operators?

Time evolution of compositional maps

» The time evolution of a compositional map F can be described with
a differential equation

dF
e F :—Hg:

with Hf the associated Hamiltonian

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics



What are compositional maps and Lie operators?

Time evolution of compositional maps

» The time evolution of a compositional map F can be described with
a differential equation

dF
— = F:—HEg:
ds 7 F

with Hf the associated Hamiltonian

» If the Hamiltonian is independent of z, the solution is
F = es :—HEg:

which is equivalent to Hamilton equations of motion

Forest, Beam Dynamics
Dragt, Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics



Fringe field map

An approximate thin fringe field map at position s =0

bl(Z)

o)
o]

v —
o
o
-

Forest et al., 2006



Fringe field map

An approximate thin fringe field map at position s =0

bl(Z)

'O

DO—>7€

Forest et al., 2006



Lie operator approach
Simplifying the fringe field map F

» Split map in drift and remaining contribution F =D o P
P=FD"!

l —dd‘: = F :—HE: ,—C:E =D :—Hp:
dP
—— =PD:—(Hf — Hp): D"
ds & (Hr p)

Forest et al., 2006



Lie operator approach
Simplifying the fringe field map F

» Split map in drift and remaining contribution F =D o P

P=FD!
. l % =F :—HE: ,% =D :—Hp:
= —PD:—(Hf — Hp): D!
ds P (He )

» The solution of this differential equation is a Dyson series or time
ordered exponential

S

Poess =P—cs—¢ +/ ds; PoessDecss 3*(HF - HD): Ds,——e

—€

Forest et al., 2006



Lie operator approach
Simplifying the fringe field map F

» Split map in drift and remaining contribution F =D o P

P=FD!
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Lie operator approach
Simplifying the fringe field map F

» Split map in drift and remaining contribution F =D o P
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= —PD:—(Hf — Hp): D!
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» The solution of this differential equation is a Dyson series or time
ordered exponential

P-ecos E+/ d51 PecrsD-css 3*(HF - HD): Ds—»—¢
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Forest et al., 2006



Strategy

The fringe field map in PTC

» Describe the field with magnetic field expansion

» Find the appropriate Hamiltonian

» Define a thin fringe field map

» Calculate the effect of the fringe field on p, and p,

» Create a symplectic map that has this effect
(which will induce a displacement in x and y)

» Comparison with SLAC-75 and MAD-8 / MAD-X



Calculation of Ap, and Ap,

Order by order in the thin fringe field map expansion

Putting all pieces together...

» Lowest order Ap, =0
» First order contribution Ap,

!
Apy,l = 1 + y72 boy

» Second order contribution Ap,

More details in appendix

Bpye= [ bls)(bo—b(s))ds (“”,,)3 —

ghiK

_ [ b(s)(bo — b(s))
K= [m gbg ds

Forest et al., 2006

p? p2

2(14+6)2— p?
AR px>

Fringe field integral



Interpretation of the fringe field integral

Toy model:
1.0 %
bo S

b(s) = — (t h— 1) 08

(s) 5 (tanh~ +
The integral reduces to .
K — /+°° b(s)(bo - b(s)) o _ 2 / \7/\'?“’”?1; -

o 8 2 — 3

Dominated by the region where b(s) and (b — b(s)) are not small

> Dimensionless

» Linear in the range of the fringe field
» Independent of the total strength

» Ranges between 0 (hard edge) and co
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» Calculate the effect of the fringe field on p, and p,

» Create a symplectic map that has this effect
(which will induce a displacement in x and y)

» Comparison with SLAC-75 and MAD-8 / MAD-X



Generating function: A symplectic map with the correct
effect on p,

The symplectic map for a straight bend with flat pole face

1
F= PxXf + Py}/f - 561( - §¢(PX7Pya5),Vf2

x' >2< Py
1/) = botan [arctan (]-_'_}//2) _gbOK < + = 2 <2+ ps>> P;|

10

X=X+ = 1/) 2 Px,f = Px .
2 8px ’ Not derived

2y
e N T Py.r =Py —Vyr+cy?
1+1/17287py_y

109

U =0 — — 22 5 =0

f 285}/7‘ f

Forest et al., 2006



Strategy

The fringe field map in PTC

» Describe the field with magnetic field expansion

» Find the appropriate Hamiltonian

» Define a thin fringe field map
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Comparison with SLAC-75 and MAD-8 / MAD-X

Forest with conventions of MAD-X: A symplectic map

> px =sin (i, ps = cos f3;
—x' = % = tan f3;

Ppy:O—>y/=0

Px > 5—0

X/
1 = bptan {arctan (1-1—)/'2) — gboK (1+ X7 (2+y?)) Ps}

1
cos f3;

= bptan {ﬂ; — ghoK (1+ sin? ﬁ;)]

Py,f = py — botan [ﬁi - gbOKcos,B,- (1 + sin? ﬁi):|}/f




Comparison with SLAC-75 and MAD-8 / MAD-X

MAD-X: A non-symplectic expansion around the origin

Bi = Bi — gboK (1+sin®3;)

cos f3;

Pole face rotation

Flat pole face




Fringe field map: Straight bend with curved pole
face



Straight bend with curved pole face

A symplectic map with the correct effect on py and p,

» Curved pole face with bending
radius Ry

> Straight reference frame

» Cylindrical symmetric pole face

» Pure vertical field for y =0

Vector potential a = (ay, 0, a,)

a, = —rpb(r)
1 da, 1 » 1 10 0
= J— n n—=—"—"""——Fx——~~r=—4ap-1, - b
%o Zn:l on dr a 2n(2n—|—1)r8rr8ra 1, (r)

8 X
H= —\/(1 +6)2 — (px + cos pa,)? — p2-+cos pa,—sin waw—é/ sin pa, dx

Forest et al., 2006



Straight bend with curved pole face

A symplectic map with the correct effect on py and p,

» Curved pole face with bending

radius Ry
-, » Straight reference frame
Px Ro » Cylindrical symmetric pole face
oz - 0 > Pure vertical field for y =0
_ bo 1+9
=(px,0) = Y-
2RO V (1 + 5) — Px
X a Pxf = Px — Zy°
f= 3= 5 f = Px — =
bg 1- %}ﬂ
Px,f = Px + _
Py, f = Py — =Xry by =1~ %Xfy

Forest et al., 2006



Comparison with SLAC-75 and MAD-8 / MAD-X

Forest with conventions of MAD-X: A symplectic map

Px

x4 » p, =sinf3;, ps = cos f3;
—— —x' = % =tan
\\LS | 2 py:0—>y/:0
RO > 6 == 0
pe s=0 » MAD-X in pipe frame
1 b (x? 2) 1 b
xf= —= o a5 (X — =————Xx
Pof = cos3 Bi 2R, y Py.f cos3 3 2R, 4




Comparison with SLAC-75 and MAD-8 / MAD-X

MAD-X: A non-symplectic expansion around the origin

This means the effect on x of order x2

bo
Tul = Tozs = Tara = —— tan” 91

To12 = T313 =

Ti3 =

Taz23

Tou =

T2s3

Taz =

2

+ % tan’ U

+ % sec? U
bo

2
5 sec” Y

The difference with MAD-X
comes from the requirement
to be symplectic

bo
2Ry
bo

3
2R, sec” Y1

bo 3
2Rs sec” Y1

sec> U

H- K1 tan 1/)1

2
— Kitan [+ % tan 41 (1 + sec® 1)

— Kitan ’(bl

Curved pole face —

N Quadrupole component

(Neglected in our derivation)



Next steps

v

Comparison with real magnets (ELENA, HeLICS, canted theta)
Quadrupole and combined function fringe fields

Fringe impact on orbit, beta-beating, non-linear RDT, detuning,
chromaticity

Comparison between thin map and realistic fields for ELENA,
HeLICS, canted theta for these observables

Measurement with beam (beta-beating, chromaticity, non-linear
RDT)



Appendix



Divergence, gradient and Laplacian in curvilinear
coordinates

Divergence and gradient

1
Vo = 0xpX + 0y¢y + 7~ 0s08

V . A = 1 n thx ((1 + hX)AX) + 6yAy + masAs
Laplacian
V- (Vo) = O (1 + hx)0y ) + 0% + L) 1 Dsh
1+ hx " )0 Y 1+hx “\1+hx~°



Magnetic field expansion

Relation with the magnetic field B = 76(;5 and first terms

an(s) = 91 1B.(x,y,5)|

x=y=0
_ Aan—1
bn(s) - ax By(X7y7s)|X:y:0
1 X y x? Xy y?
B | & 32 by % by —ag—h(a;—alhz—2b§')+bsh’—a{’
B, | by by —b, — ah— 2 L} —a3 — h(ap — ath — 2b.) + bh' — & ottty
B, | by —bh+a b} byh? — ajh+ % —hb; + b AL S

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Magnetic field expansion
Relation with the magnetic field B = -V ¢

o0 n—1
Bu(x,y = 0,5) = —0x¢o(x,s) = ;an( )(nX_ 1)!
o] n—1
RS i)
1
Bi(x =0,y =0,5) = — Oso(x, =bs
(x=0,y=0,5) T h bo(x; s) . (s)

an(s) = a)?_lBX(vaa S)}
by(s) = 8)’(’_1By(x,y7s)|

x=y=0

x=y=0

S. D. Fartoukh, 1997; C. Wang and L. Teng, 2001



Hamiltonian splitting
Simplifying the fringe field map F

» Expand the Hamiltonian in y

He= —\J(1+6)2—p2—p2 +b(s)x

Independent of position — no kick

Px
- yOyax + o(y?)

J@+672—p2 -5

» Split map in drift and remaining contribution, F=Do P

Forest et al., 2006



Hamiltonian splitting
Simplifying the fringe field map F

» Expand the Hamiltonian in y

Hr = —\/(1 +0)2—p2—p2 +b(s)x

Independent of position — no kick

Px
- yOyax + O(y2)

J@+672—p2 -5

» Split map in drift and remaining contribution, F=Do P

» Possible approach: determine the Hamiltonian of P = D=1 oF,
taking into account the Baker-Campbell-Hausdorf theorem for the
associated Lie maps

XY — XHYHIX Y+ HIX XY= SV X Y= 55 [V XX YT

but Hamiltonian depends on s: Magnus series

Forest et al., 2006



Hamiltonian splitting
Simplifying the fringe field map F

» Expand the Hamiltonian in y

Hr = —\/(1 +0)2—p2—p2 +b(s)x

Independent of position — no kick

Px
- yOyax + O(y2)

J@+672—p2 -5

» Split map in drift and remaining contribution, F=Do P

» Possible approach: determine the Hamiltonian of P = D=1 oF,
taking into account the Baker-Campbell-Hausdorf theorem for the
associated Lie maps

XY — XHYHIX Y+ HIX XY= SV X Y= 55 [V XX YT

but Hamiltonian depends on s: Magnus series

» Alternative approach: the use of Lie operators

Forest et al., 2006



What are compositional maps and lie operators?
Example: drift

» To give an example, let us have a look at the drift Hamiltonian in a
straight reference frame

Hp =20~ J(1+0)2 = p2 - pf
BO T’
pr + 2% +1
» Lie operator

3
OHp 0 OHp 8)
‘Hp: = —_—
b ; < dqk Opk  Opk Oqx

_anpya(ll)a
p: Ox  ps Oy Bo B) 0T



What are compositional maps and lie operators?
Example: drift

» Compositional map
D= es:—HD:

» Transfer map




Alternative approach: The use of Lie operators
Simplifying the fringe field map F=DoP — P=D"10oF

» Calculate the derivative of the associated Lie map P = FD!

-1
— =F:—Hg:, Q =D:—Hp: — db
ds ds

—:—Hp: D!
ds b

dP _ dF -1 dD !
ds T dsD +F ds

=F:—Hr D1 —F:—Hp: D1

dP

_ . _ .N—1
o = PD:~(Hr — Hp): D



Expansion of the thin fringe field map

B(bo)

T = ’DOHfs]:;EHEBEHO(bO)
= DO—>—sp—s—>6D—s—>0D0—>sBs—>O(bO)

B._o(bo) |

F*S%S

Forest et al., 2006




Expansion of the thin fringe field map

D B(bo)
T = DOH*E-/—_;EHEBEHO(bO) \ D(J;fﬂ : B *}()‘(bo) \
\ - |
= DO—)—SP—E—N‘:D—E%O%BSM) F ...
D — e —— —e—e
Does not contribute to Ap, T

£
D_.P_c,.D. =1 —|—/ dsy :—V(x +six',y +s1y’,s1):
e_E s
+/ dsl/ dsy —V(x+sx,y+ sy, 5) —V(x+sax',y+sy, s)
—€ —E&

with V = Hf — Hp

Forest et al., 2006



Effect on p, and p,

» Lowest order effect on p, is zero

» Effect on p,: calculate the Poisson brackets

Py,f = ’Dfelpfsﬁspepy

£
= py +/ ds; :—V(x +six',y + s1y’,s1): py

—€

1> S1
+/ dsl/ ds, :-—V(x +9x,y + sy, ) :=V(x+s1:x',y +s1y’,51): py
—€ —€

Forest et al., 2006



Effect on p, and p,

» Lowest order effect on p, is zero

» Effect on p,: calculate the Poisson brackets

First order contribution Ap, ;

Py,f = 'D,E'P,EHE'DEP}/

£
=|py +/ ds; :—V(x +six',y + s1y’,s1): py

—E

1> S1
/ dsl/ ds, :-—V(x +9x,y + sy, ) :=V(x+s1:x',y +s1y’,51): py
—E —E&

Identity map

Second order contribution Apy »

Forest et al., 2006



Generating function to create a symplectic map

» Typical generating function:

F(Xf’ anyfa Py _67 éf) = Pfo + pyyf — 5€f + /\()
/

» Map determined from

(L OF e OF
Opx o oxf

_ OF ¢ OF
Yy = aipy py 5‘yf
. OF OF
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