The ANUBIS detector proposal

An overview

Paul Swallow (He/Him)

University of Cambridge

October 23, 2024

On behalf of the ANUBIS collaboration

The ANUBIS Detector: Overview

- AN Underground Belayed In-Shaft (ANUBIS) experiment.
 - □ Proposed in 2019 [1].
- Transverse LLP experiment.
 - \Box $\mathcal{O}(20 \text{ m})$ from Interaction Point (IP).
- Based in ATLAS Cavern (IP1) at CERN.
 - □ Incorporated as an official sub-project.
- Currently have O(10) Institutes involved.
 - \square Representing $\mathcal{O}(10)$ FTE.
 - Welcoming new collaborators in many areas.

Physics Motivations

- Unique sensitivity to LLPs produced in high-Q² collisions.
 - \square With $m_{LLP} > 1$ GeV and $c au \gtrsim \mathcal{O}(10^2 \text{ m}).$
 - Not probed for GPDs or Forward/Beam dump experiments.
- Unique opportunity that other transverse experiments don't have.
 - □ Full integration with ATLAS trigger and DAQ system.
 - □ Get full information of LLP candidates measured in ATLAS and ANUBIS.
 - \Box Can search for LLPs with associated production of prompt particles *e.g. H*, *W*, or *Z*.
 - $\hfill\square$ Also an active veto for BG events.
- Also has **complementarity** with other experiments.

Detector Technology and Geometry

Parameter	Specification
Time resolution	$\delta t \lesssim 0.5 \; { m ns}$
Angular resolution	$\delta lpha \lesssim 0.01 { m rad}$
Spatial resolution	$\delta x, \delta z \lesssim 0.5 \ { m cm}$
Per-layer hit efficiency	$arepsilon\gtrsim98\%$

UNIVERSITY OF CAMBRIDGE

- Instrument w/ ATLAS Phase II RPCs [1].
 - □ Gaseous detector with: $C_2H_2F_4$ (64%), CO_2 (30%), C_4H_{10} (0.3%) & SF₆ (1%).
 - $\hfill\square$ Active R&D on Eco-gas alternatives.
 - □ Cheap, large Area, and validated technology.
 - □ Timing Resolution $O(250 \, ps)$, and Spatial Resolution $O(3 \, mm)$.
- Base unit of the detector geometry is the RPC panel:
 - $\hfill\square$ Aluminium frame for mechanical support: $\hfill \sim 1 \times 2 \mbox{ m}^2.$
 - □ Frame can contain up to three RPC singlets.
 - Each RPC singlet has readouts either side of the gas gap, divided into strips.

Detector Technology and Geometry

- For ANUBIS: cover ATLAS Cavern ceiling.
- Follow the arc to maximise distance from IP uniformly.
- Two potential designs:
 - 1. Two separated layers of triplet RPC panels.
 - 2. As above with additional singlet between to improve vertexing and disambiguation.
- Overall singlet area \approx 9,800 m² and detector area \approx 1633.3 m².
- Extends ATLAS' LLP fiducial volume from $\sim [1 \text{ mm} 1 \text{ m}]$ to $\mathcal{O}(20 \text{ m})$.
- Covers a large solid angle: ~ 2.1 sr.
- Smaller-scale prototype in place: proANUBIS.

Detector Technology and Geometry

UNIVERSITY OF

Ongoing Sensitivity Studies

- Studies have been performed previously that include ANUBIS [1-4].
- Internally have produced $H \rightarrow SS$ estimates [5].
- We want to cover the PBC benchmarks at a minimum.
 - Advanced study on HNL benchmarks BC6-8.

[1]: 2001.04750

Paul Swallow (Cambridge, He/Him)

 Developing a flexible, modular sensitivity study framework: SET-ANUBIS.

2105.13851

$H \rightarrow SS$ Sensitivity

- Initially looked at PBC model BC5.
 - □ Higgs portal to Dark Scalars.
 - Heavy mediators good targets for transverse detectors.
- Simulated signal events via MADGRAPH and applied cuts.
 - Require Jet and charged particle objects.
 - Simulate ATLAS active-veto and isolation requirements.
 - □ Acceptance cuts.
- Compared initial geometry (In PX14 service shaft) to current (ceiling).
- Dramatically improved sensitivity for ceiling configuration.
- $\mathcal{B}(H \rightarrow SS) \lesssim \mathcal{O}(10^{-6})$, for $m_{LLP} \in [10 - 40]$ GeV.

The SET-ANUBIS framework

CAMBRIDGE

Goal: Create a flexible framework to handle a variety of LLP models to determine ANUBIS' sensitivity.

- Based on the work of T. Satterthwaite et al [1], $H \rightarrow SS$ model.
- Methodology:
 - □ Simulate LLP model (MADGRAPH, PYTHIA *etc.*).
 - □ Apply Selection: detector acceptance, background removal *e.g.* isolation requirements.
 - Calculate sensitivity: Number of LLP candidates (*N*_{LLP}) required to exceed BG expectations significantly.
- Planned Models:
 - □ HNLs, Dark Photon, Dark Scalar etc.
 - □ As outlined in PBC proposal [3].

The ANUBIS detector proposal

Sensitivity Studies: HNLs

- Two generic production modes: Hard Interaction Bosons (W,Z,H) and Mesonic (B,D).
 - □ Best expected sensitivity: boosted, high mass HNL produced by W/Z/H.
- We use MADGRAPH for HIB & PYTHIA for the mesonic production and HNL decays.
- Examining HNL decays to: $e^{\pm}qq'$, $\nu_e qq'$, $e^+e^-\nu_e$.
- For $m_{LLP} \in [0.01, 10]$ GeV.
- Evaluated \mathcal{B} limit for each decay mode.
 - $\square \ \mathcal{B}(HNL) \sim \mathcal{O}(10^{-9})$ at 1 GeV.
 - Preliminary results, updated soon.
 - Plot and limit for coupling=1, for easier reinterpretation.

The proANUBIS Demonstrator

- Composed of three RPC panels: triplet, singlet, doublet.
- Using Phase-I ATLAS RPCs.
 - Provisional DAQ setup: TDCs not yet incorporated TDCs in readout.
 - $\hfill\square$ Cost savings in future.
- Data-taking since April 2024.
 - \Box Collected 79.5 fb⁻¹ of *pp* collisions.
- Main Goals:
 - $\hfill\square$ Measure expected Background level.
 - □ Determine detector performance.
 - Develop analysis techniques and software.

Ongoing Data analyses

- Lots of ongoing work in analysing the proANUBIS data.
 - □ Initial studies performed to calibrate data *e.g.* Time walk corrections.
 - Working on synchronisation with ATLAS data.
 - Saw visual correlation initially.
 - Matching on a Bunch-Crossing level achieved: 114 bunch offset measured.
- Reconstruction methods being developed:
 - □ Clustering hits from the RPCs.
 - □ Reconstructing clusters as multiple tracks.
 - □ Vertexing studies are ongoing.
- Significant contribution from Cambridge students: T. Adolphus, P. Collins, Y. Wan, J. Dej.

Ongoing Data analyses

- Lots of ongoing work in analysing the proANUBIS data.
 - □ Initial studies performed to align data hits *e.g.* Time walk corrections.
 - □ Working on alignment with ATLAS data.
 - Saw visual correlation initially.
 - Matching on a Bunch-Crossing level achieved: 114 bunch offset measured.
- Reconstruction methods being developed:
 - □ Clustering hits from the RPCs.
 - □ Reconstructing clusters as multiple tracks.
 - $\hfill\square$ Vertexing studies are ongoing.
- Significant contribution from Cambridge students: T. Adolphus, P. Collins, Y. Wan, J. Dej.

Ongoing Data analyses

- Also measured the efficiency of our RPCs in situ.
 - $\hfill\square$ Nominally operates at 5.7 kV.
 - □ Get high efficiency of each individual RPC.
 - □ Triplet configuration has 99% efficiency.
- Performed a preliminary angular distribution analysis.
 - Want to disambiguate between up- and down-going tracks to reject Cosmics.
 - Simulated Cosmic distribution through sandstone and compared to proANUBIS measurements.
 - Peak aligns with Cosmics from the PX14 shaft.

Summary & Timeline

- ANUBIS is a proposed transverse LLP detector.
 - Sub-detector of ATLAS allowing for additional information and active vetoing.
- Instrumented with RPC detectors covering \sim 9,800 m² & \sim 2.1 sr.
- Demonstrator in place has taken $\sim 80 \text{ fb}^{-1} pp$ collision data.
 - Many ongoing studies to aid future full detector design and analysis.
- Sensitivity studies also ongoing, focusing initially on PBC benchmarks.
 - Developing modular framework: SET-ANUBIS.
- Welcoming new collaborators: ANUBIS twiki.

2033+: FCC detector construction & exploitation	
4	2035+: Run 5 full ANUBIS+ATLAS data taking
	2033+: bulk ANUBIS deployment in cavern (LS4)
	2030+: Run 4 partial ANUBIS data taking
	2028+: partial ANUBIS deployment in cavern (LS3)
	2026+: ANUBIS detector R&D (electronics, R/O) engineering for cavern deployment
	2025: proANUBIS data analysis, Letter of Intent
	2024: PBC model #7 (#8, #9), proANUBIS data taking
	2023: finalise geometry, PBC model #6, proANUBIS
	2022: seed funding for proANUBIS
	2021: ANUBIS location & prototype conception
	2020: proANUBIS sensitivity studies
	2019: ANUBIS conception

ANUBIS Organisation

Co-Spokesperson (theory)Co-Spokesperson (expt) Martin Bauer Oleg Brandt martin.m.bauer@durham.ac.uk oleg.brandt@cern.ch

Outreach coordinator Louie Corpe

Physics Coordinator Michael Revering M.Revering@cern.ch

Simulation Coordinator Paul Swallow paul.nathaniel.swallow@cern.ch

Technical Coordinator Aashaq Shah aashaq.shah@cern.ch

R&D Co-coordinator Giulio Aielli giulio.aielli@cern.ch

R&D Co-coordinator Luca Pizzimento luca.pizzimento@cern.ch

Exploring HNLs at ANUBIS: Decays

- Decay mode of heavy neutrino $N_4 \rightarrow \nu_\ell, \nu_{\ell_2} \overline{\nu_{\ell_2}}$ $N_4 \rightarrow \nu_\ell e^- e^+$ $N_4 \rightarrow e^- \mu^+ \nu_m + c.c$ $N_4 \rightarrow \mu^- e^+ \nu_e + c_c c$ $N_4 \rightarrow \nu_\ell \pi^0$ $N_4 \rightarrow e^- \pi^+ + c.c$ $N_4 \rightarrow \nu_\ell \mu^- \mu^+$ $N_4 \rightarrow \mu^- \pi^+ + c.c$ $N_A \rightarrow e^- K^+ + c.c$ $N_A \rightarrow \nu_\ell \eta$ $N_4 \rightarrow \mu^- K^+ + c.c$ $N_4 \rightarrow \nu_e \rho^0$ $N_4 \rightarrow e^- \rho^+ + c.c$ $N_4 \rightarrow \nu_\ell \omega$ $N_A \rightarrow \mu^- \rho^+ + c.c$ $N_4 \rightarrow e^- K^{*+} + c.c$ $N_4 \rightarrow \nu_e K^{*0}$ $N_4 \rightarrow \nu_\ell \overline{K}^{*0}$ $N_4 \rightarrow \nu_\ell \eta'$ $N_A \rightarrow \mu^- K^{*+} + c.c$ $N_4 \rightarrow \nu_\ell \phi$ $N_A \rightarrow e^- \tau^+ \nu_\pi + c.c$ $N_A \rightarrow \tau^- e^+ \nu_e + c.c$ $N_A \rightarrow e^- D^+ + c.c$
- Assumed a **minimal**, majorana HNL model (type I seesaw).
- Only introducing **one** HNL (PBC model BC6):
 - \Box Currently only couple HNLs to ν_e 's.
- ANUBIS should see any charged final state:

$$\square$$
 $N \rightarrow e^{\pm}qq'; N \rightarrow \nu_e qq'; N \rightarrow e^+ e^- \nu_e$

 \square But **not** $N \rightarrow \nu_e \nu \overline{\nu}$

- For $m_{HNL} > m_{\pi}$ decays into mesons possible.
- More mesons are kinematically accessible for larger masses [1].

Simulating HNLs

- Use MATHEMATICA to derive decay widths [1,2].
- SET uses (for HNLs):
 - $\hfill\square$ MadGraph: **HIB** production
 - $\hfill\square$ Pythia: Meson production & HNL decays.
- Produce *N_{gen}* events in 12 combinations of:
 - □ Production modes (CCDY, NCDY, ggF, W γ).
 - Decay modes
 - $(e^{\pm}qq^{\prime}, \,
 u_e qq^{\prime}, \, e^+e^u_e).$
- For 11 HNL masses ∈ [0.5, 1.5] GeV.
 □ Later: Expand to ∈ [0.01, 10] GeV.
- Then apply low-level selections.
 Representing BG removal.

Exploring HNLs at ANUBIS: Selection

Expected Backgrounds [1]:

- **Neutral SM LLPs**: *e.g.n/K* decaying/scattering in cavern.
- **'Punch-through' jets/muons** that escape the ATLAS detector.
- **Cosmics**: reduced by rock shielding (~ 8 Hz).

Background Removal:

- Reduce most BGs by using ATLAS as an active veto and selections.
- ANUBIS geometric acceptance requirement.
- ATLAS isolation requirements (e.g. [2,3]) should eliminate collision BGs:
 - $\Box \ \, E_{\rm T}^{\rm miss} > 30 \ {\rm GeV}; \ \Delta R({\rm LLP,jets}) > 0.5; \ \Delta R({\rm LLP,charged}) > 0.5$
 - $\hfill\square$ Isolation requirements effective at removing hadronic collision BGs.
 - \Box Some discussion on older selection in [4].

Results

- Preliminary sensitivity limits:
 - □ (Top) Inclusive of decay mode (*e.g.* $e^{\pm}qq'$).
 - (Bottom) In each of the 12 combinations of production and decay.
- Also able to recast into:
 - $\square \mathcal{B} \text{ vs } c\tau.$
 - $\Box |U_{eN}|^2$ vs mass.
 - □ (See future paper.)
- The latter allows direct comparison to previous estimates [1-5].

Future plans

- Finalise studies for HNLs:
 - $\hfill\square$ Extend the mass range.
 - $\hfill\square$ Include meson production.
 - Paper planned for the end of summer.
- Expand the framework to include additional models:
 - □ e.g. Dark Photon, Dark Scalar, Axions etc.
 - $\hfill\square$ Framework is modular \rightarrow easy to add models.
 - □ Feel free to recommend models!
- Develop more detailed background estimation.
 - Developing GeoModel of (pro)ANUBIS: incorporated into ATLAS geometry.
 - proANUBIS data analysis direct measurements of potential BGs.

PBC model BC5.