

RD50 HV-CMOS Meeting

DESY Test Beam Oct. 2024 First results

Bernhard Pilsl

AUSTRIAN ACADEMY OF SCIENCES

Setup

- Telescope: 6 Adenium planes
- Telepix2 as ROI trigger
 - Input to TLU
- Operated with 4.2 GeV electrons
- Improved cooling setup (Thanks to Sam and Christian!) able to go down to ~-15°C
 - Operated all samples at this temperature
- Samples in luggage:
 - Non-Irradiated W8 (W8-0E0)
 - W3-1E14
 - W3-3E14
 - W8-1E15
 - W3-1E16

- Each sample measured with "standard" settings
 - V_{Bias} = 190V
 - $V_{Thr} = 1.1V$
- Best settings
 - Minimized threshold (as low as possible without noise)
 - Maximized Bias voltage
- Bias Voltage Scans (at safe threshold)
 - Going from 0V \rightarrow 500V in 10V steps
- All done for both biasing schemes (backside and topside)

Analysis is not done yet! You are about to see **very preliminary** plots This is a first glance, do not present elsewhere

- One "damaged" double column (columns #44 + #45 → double column #22)
- 1 noisy pixel

AUSTRIAN CADEMY OF

- Masked during data taking

General problems 1E15

• 1 dead double column (#16)

AUSTRIAN CADEMY OF

- Reason for (upcoming) masking
- TS-overflow not counting → had to use TLU timestamp → No proper timing analysis possible
- Died at $V_{Bias} = 600V$ at the testbeam

General problems 1E16

- Is talking to I2C and delivering data (a little bit)
- Increased noise
- Correlations observed
- Track based characterization difficult (not managed to so far)

Standard Settings (1)

Coloring: Biasing Topside Backside				
DUT	ClusterSize	ТоТ		
W8-0E0	1.07	6.02 F	-ishy	
W3-1E14	1.15	13.62		
W3-1E14	1.16	13.78		
W3-3E14	1.12	4.99		
W3-3E14	1.12	4.97		
W8-1E15	1.04	2.09		
W3-1E16	1.36	73.68		

Standard Settings (2)

Coloring: Biasing Topside Backs			
DUT	σ X- Residuals [μm]	σ T- Residuals [ns]	
W8-0E0	20.51	11.05	
W3-1E14	20.79	10.04	
W3-1E14	TODO		
W3-3E14	19.14	11.23	
W3-3E14	19.2	10.68	
W8-1E15	21.51	-	
W3-1E16	-	-	

Standard Settings (3)

Coloring: Biasing	Topside Backside	•
DUT	Efficiency [%]	
W8-0E0	97.5% F	ishy
W3-1E14	99.5%	
W3-1E14	TODO	
W3-3E14	84.7%	
W3-3E14	85.5%	
W8-1E15	8.9%	
W3-1E16	-	

RD50_MPWx_0 Pixel efficiency map

RD50_MPWx_0 Pixel efficiency map

AUSTRIAN ACADEMY OF SCIENCES

Minimizing thresholds

DUT	V _{Thr}	V _{Bias}	Efficiency	Comment
0E0	960mV	190V	99.9%	Lower V_{Thr} at higher V_{Bias} done in April
1E14	1.02V	190V	99.8%	
3E14	950mV	190V	97.9%	No masking of hurt double column
1E15	970mV	190V	51.3%	No masking of broken double column, we'll see HV is key anyways
1E16	1.05V	300V	-	You already know the problem

- Minimum thresholds were not always usable for higher bias voltages
- Higher leakage current \rightarrow higher noise

encountered No noteworthy differences

AUSTRIAN

SCIENCES

AUSTRIAN ACADEMY OF SCIENCES

The entire testbeam in 1 figure

AUSTRIAN CADEMY OF

Biasing Schemes revisited

- Only minimal differences between top and backside biasing
- Minimal but backside seems to be better at lower bias voltages

Best Efficiencies

DUT / Fluence	Biasing	VThr	VBias	Efficiency	Comment
0E0	Тор	1.1V	210V	99.9%	
1E14	Тор	1.05V	600V	99.9%	Lower V_{Thr} available
3E14	Back	950mV	500V	99.6%	Masked noisy pixel but not the hurt double column
1E15	Тор	970mV	580V	<mark>95.4%</mark> / 98.7%	Full / Masked
1E16	Back	1.05V	300V	-	

Summary

- 1E14 and 3E14 achieving full efficiency
 - Higher bias voltages needed though (The HV-CMOS approach works)
 - Biasing scheme top- vs. backside not showing major differences
- 1E15 still performing good
 - If it did not die, we would have achieved full efficiency
 - Backside biasing was not possible (W8)
- 1E16 is basically not working anymore

ADEMY O

ToDo

- Clean up some plots
- Why is unirradiated sample behaving so bad? Investigate!
- VNFB scans
- Mask pixels which were masked in the config
- More stuff will definitely come up
- Future testbeam?
- New samples (multiple per fluence) in range 5E14 \rightarrow 5E15 (all backside processed) needed