
https://root.cern

ROOT
Data Analysis Framework

RNTuple Workshop 2024: State of Affairs

Jakob Blomer for the ROOT team
2024-12-02

https://root.cern

Context: ROOT I/O Upgrade for HL-LHC

Major I/O upgrade of the event data file format and access API: TTree → RNTuple

2

TTree enters legacy support mode

>2EB (now) → >10EB (end of HL-LHC)
~½ of the currently projected WLCG budget on storage

RNTuple Main Results
● Major I/O upgrade of the event data file format and access API: TTree → RNTuple

○ Less disk and CPU usage for same data content
■ 10-50% smaller files, better single-core performance often by factors

○ Give access to novel and future storage technologies
■ Native support for HPC and cloud object stores
■ Async and parallel I/O: fully exploits modern NVMe drives
■ Design prepared for accelerators (e.g., GPUs, compression offloading)

○ Systematic use of checksumming and exceptions to prevent silent I/O errors

● Initial support in ATLAS, CMS, LHCb software frameworks (ESD, AOD, derived AODs & ntuples)

● Large-scale testing with IT storage group
○ 70 nodes, 100GbE EOS connection, 100TB inflated AGC benchmark

● ROOT 6.34 (Nov 2024): RNTuple stable on-disk format (version 1.0) released
○ Future ROOT versions will read data written with 6.34
○ Planned optional and possibly forward-compatibility breaking changes foreseen

● ROOT v6.36 (planned for Q2/2025): first set of APIs move out of ROOT::Experimental
○ Taking into account the input received by the HEP-CCE review

3
Many results presented at CHEP'24

Highlights from CHEP

4

M. Føll / ATLAS

Progress since last year: type system

5

Type Class Types EDM Coverage RNTuple Status

PoD
bool, char, std::byte, (u)int[8,16,32,64]_t,
float, double

Flat n-tuple

Reduced
AOD

Full AOD /
ESD / RECO

Available

Records Manually built structs of PoDs

(Nested) vectors
std::vector, RVec, std::array,
C-style fixed-size arrays

Available

String std::string Available

User-defined classes Non-cyclic classes with dictionaries Available

User-defined enums Scoped / unscoped enums with dictionaries Available

User-defined collections Non-associative collection proxy Available

stdlib types
std::pair, std::tuple, std::bitset,
std::(unordered_)(multi)set,
std::(unordered_)(multi)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional

Available

Streamer I/O All ROOT streamable objects (stored as byte array) Available

Low-precision
floating points

Double32_t, f16

Optimization benefitting all EDMs
Available

Custom precision / range
(bfloat16, TensorFloat-32, other AI formats)

Available

Type cast of PoDs

Progress since last year: AGC Testing I

6

Node
1-10

Node 11-20 Node 21-30 Node 31-40 Node 41-50 Node 51-60 Node 61-70

/shared/ CephFS /home directory + batch system written in bash

EOSPILOT
14 nodes 100GE 1334x 18TB HDDs

 24 PB - 20 PB usable

FST FST FST FST FST FST FST

FST FST FST FST FST FST FST

EOSALICEO2

125 nodes 100GE 12000x HDDs
180 PB - 150 PB usable

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

OSD OSD OSD

OSD OSD OSD

CephFS
8 nodes 25GE

80 x 7.6 TB NVMe
 568 TB - 284 TB usable

CO
M

PU
TE

STO
RA

G
E

100GE NETWORK

40 GB/s 380 GB/s 22.5 GB/s

$4 $0.8$35

Max read

$/x
1 $/x

1
$/x

6/12

Price per Volume Relative Price

Progress since last year: AGC Testing II

7

With a 100x inflated AGC200
dataset we observe that as
the number of client nodes
increases, the initialization
time gets close the
processing time, resulting in
a breakdown of scalability.

Single Analysis
extremely sparse

reaches avg. INGRES
222 GBit/s

during processing

345 GBit/s

● Introducing modified RNTuple format for AGC200 with EOSALICEO2

Next step: Reconstruction and/or data
derivation benchmark(s)

🔹 → Dense reading and (parallel) writing

Progress since last year: parallel writing & direct I/O

8

● Truly parallel writing; prototype support for multi-process and MPI support
● Capable of fully exploiting NVMe drives
● Reaching throughput values that allow for meaningful contribution to

processing workflow of DUNE supernova event candidates

→ https://indico.cern.ch/event/1338689/contributions/6010002 → https://arxiv.org/abs/2410.14239

Writing in parallel to one file is as fast as writing
128 files

Reconsider trade-off between write speed and file size

https://indico.cern.ch/event/1338689/contributions/6010002
https://arxiv.org/abs/2410.14239

Progress since last year

9

● RNTupleProcessor: friends & chains with solid underpinnings
○ https://indico.cern.ch/event/1338689/contributions/6016196
○ See talk by Florine later today:

https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

● Connect RNTuple type description to TFile streamer info
(enabling, e.g., MakeProject and manual schema evolution)

● Late model extension in RNTupleMerger (TFileMerger)

● Removal of 1GB TFile limit for RNTuple data (exception: streamer field)

● Tested limits: 100k columns, 100k clusters, 600M elements per page
○ Some factor of 10 larger than largest examples we encounter

today (e.g., ~15k columns in CMS AOD)

https://indico.cern.ch/event/1338689/contributions/6016196
https://indico.cern.ch/event/1468611/#3-rntuple-processor-joins

Tooling: RNTupleViewer

10

Rich (internal) tooling: RNTupleInspector (presented last year), RNTupleViewer: https://codeberg.org/silverweed/rntviewer

We can imagine a set of power
tools, maintained outside the
ROOT source tree.

E.g., manual RNTuple
descriptor manipulation.

https://codeberg.org/silverweed/rntviewer

Ongoing Issues

11

● Tuning (auto tuning?) of column encoding

● Investigation of MiniAOD space savings (~7.5 %, would ideally be > 10% [somewhat arbitrary])
● Framework support: profile & improve writing and reading from frameworks
● Support for vectors with custom allocators (ATLAS)
● Support for writing into directories, bulk reading optimizations (ALICE)
● Validation suite for 3rd party readers
● I/O support for SoA data structures, see talk tomorrow
● Meta-data support, see talk tomorrow

→https://indico.cern.ch/event/1338689/contributions/6010824/

M. Føll

https://indico.cern.ch/event/1468611/#9-aos-soa-with-views
https://indico.cern.ch/event/1468611/#8-rntuple-attributes-design
https://indico.cern.ch/event/1338689/contributions/6010824/

Priorities for 2025

12

● Define the first set of APIs to move out of ROOT::Experimental
○ Planned for ROOT v6.36, i.e. likely May 2025
○ More or less the classes subject to the HEP-CCE review
○ We can extend the APIs later (e.g. additional ClusterPool tuning),

but once in production it will be costly to change existing APIs
○ Not all RNTuple APIs will move out at the same time

● Fully functional schema evolution (basic functionality working for v6.36, full set possibly post v6.36)

● RNTupleProcessor: capability to arbitrarily combine friends and chains

● RNTuple attribute extension prototype (see later), likely leading to v1.1 ondisk format

● Testing and validation on IT testbed with data derivation and/or reconstruction benchmark(s)

● Tuning, support, bug fixes, training: with the transition to production, the support effort begins

● Lower priority: S3 backend, intra-event links, checkpoints during writing, sharded clusters and horizontal
merge

Round table: questions to experiments

13

● Round table discussion starters:

○ From your point of view, are we missing anything important?

○ Is the parallel writer of interest to you?

○ How can we facilitate RNTuple adoption?

○ Can you provide us a benchmark (code + data) for a reconstruction or data derivation task
for the IT testbed

■ Ideally: test also the parallel writer
■ Large data set would allow for validating possible automatic tuning of column

encoding

○ Extra: we will (re)start development on RFile next year. What are your wishes (e.g.
ownership model, concurrency, etc.)

