
Data set chains and joins with the
RNTupleProcessor

Florine Willemijn de Geus, CERN EP-SFT & University of Twente (NL)
for the RNTuple development team

RNTuple Workshop 2024, CERN
December 1, 2024

Introduction

N.B. this presentation is adapted from my CHEP 2024 talk.

TTree has the ability to concatenate data sets in two directions:
1. Vertically through the TChain interface;
2. Horizontally through the TTree::AddFriend interface, possibly using a TTreeIndex

for unaligned entries.
They can be combined using TChain::AddFriend.

Similar functionality is desired for RNTuple. We want to provide additional
composition flexibility and above all, prevent users from accidentally getting
erroneous data.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 2/14

https://indico.cern.ch/event/1338689/contributions/6016196/

Use cases for data set joins

1. Analysis may require objects not present in the compact data format
2. Analyses could be sped up by storing and reusing (expensive) intermediate

computation results

This would currently require copying the relevant fields from the central
NanoAOD/PHYS(LITE)/... and these additional data into a custom RNTuple.
: (unnecessary) data duplication!

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 3/14

Data set joins: the ideal case

Primary data
Event A B

12

13

14

Aux. data
Event C

12

13

14

Joined data
Event A B C

12

13

14

⨝ =

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 4/14

Data set joins: a realistic scenario

Primary data
Event A B

12

13

14

Aux. data
Event C

14

12

13

Joined data
Event A B C

12

13

14

⨝ =

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 5/14

The caveats of unaligned data set joins

• Which events belong together?
▶ Both false positives and negatives are

unacceptable!
• What if the right-hand side event data
is missing?

• What if my events are scattered across
multiple files?

• What if want to distribute my analysis?

+ How to express all of this nicely?

Primary data
File 1

File 2

Entry N1

Entry N2

Entry N3

Entry N4

Auxiliary data
File 1

File 2

File 3

Entry M1

Entry M2

Entry M3

= corresponds to entry

???

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 6/14

The caveats of unaligned data set joins

• Which events belong together?
▶ Both false positives and negatives are

unacceptable!
• What if the right-hand side event data
is missing?

• What if my events are scattered across
multiple files?

• What if want to distribute my analysis?

+ How to express all of this nicely?

Primary data
File 1

File 2

Entry N1

Entry N2

Entry N3

Entry N4

Auxiliary data
File 1

File 2

File 3

Entry M1

Entry M2

Entry M3

= corresponds to entry

???

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 6/14

Handling unaligned joins

When events between two data sets don’t align on their entry numbers, we need a
join index:

• Mapping between values of one or multiple join columns and corresponding entry
numbers
▶ Support for up to 4 integral-type join columns
▶ Multiple column values are combined into a single hash

• Built for the auxiliary data set
• Probed using values from the primary data set

indexVals = {
run = 4
event = 1234

}

hash(indexVals) = 1035905 index(1035905) = 42

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 7/14

Our approach in RNTuple: current status

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 8/14

Our approach in RNTuple: current status

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

std::vector<RNTupleSourceSpec> ntuples{
{"myElectrons", "electrons1.root"}, {"myElectrons", "electrons2.root"}};

auto processor = RNTupleProcessor::CreateChain(ntuples);

for (const auto &entry : *processor) {
std::cout << "pt = " << *entry.GetPtr<float>("pt") << std::endl;

}

: See the ntpl012_processor_chain.C tutorial

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 8/14

https://root.cern/doc/master/ntpl012__processor__chain_8C.html

Our approach in RNTuple: current status

New data iteration model: RNTupleProcessor.

Responsible for handling chains and joins , in a unified way.

std::vector<RNTupleSourceSpec> ntuples{
{"myElectrons", "electrons.root"}, {"myMuons", "muons.root"}};

auto processor = RNTupleProcessor::CreateJoin(ntuples, {"run", "event"});

for (const auto &entry : *processor) {
std::cout << "electron pt = " << *entry.GetPtr<float>("pt") << std::endl;
std::cout << "muon pt = " << *entry.GetPtr<float>("myMuons.pt") << std::endl;

}

: See the ntpl015_processor_join.C tutorial

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 8/14

https://root.cern/doc/master/ntpl015__processor__join_8C.html

Our approach in RNTuple: next steps

Make data sets fully composable:

RNTupleProcessor

RNTupleBaseProcessor
RNTupleProcessor::Create(RNTupleOpenSpec)

RNTupleChainProcessor
RNTupleProcessor::CreateChain({RNTupleProcessor})

RNTupleJoinProcessor
RNTupleProcessor::CreateJoin({joinField},{RNTupleProcessor})

Each processor implements the same interface for loading entries, allowing for
arbitrary composition ordering.

This could potentially help speed up processing.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 9/14

Chain-first approach

myElectrons
electrons1.root

myElectrons
electrons2.root

myMuons
muons1.root

myMuons
muons2.root

auto electrons = {Create({"myElectrons", "electrons1.root"}), Create({"myElectrons", "electrons2.root"})};
auto muons = {Create({"myMuons", "muons1.root"}), Create({"myMuons", "muons2.root"})};

auto electronChain = CreateChain(electrons);
auto muonChain = CreateChain(muons);

auto processor = CreateJoin({electronChain, muonChain}, {"run", "event"});

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 10/14

Join-first approach

myElectrons
electrons1.root

myElectrons
electrons2.root

myMuons
muons1.root

myMuons
muons2.root

auto emPair1 = {Create({"myElectrons", "electrons1.root"}), Create({"myMuons", "muons1.root"})};
auto emPair2 = {Create({"myElectrons", "electrons2.root"}), Create({"myMuons", "muons2.root"})};

auto electronMuonJoin1 = CreateJoin(emPair1, {"run", "event"});
auto electronMuonJoin2 = CreateJoin(emPair2, {"run", "event"});

auto processor = CreateChain({electronMuonJoin1, electronMuonJoin2});

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 11/14

Performance considerations

Joining datasets will not come for free (especially when chains are involved).
: Biggest bottleneck: building and probing the join index.

The cost of joining depends on:
• Number of events;
• Contents of the index values;
• “Scatteredness” of events.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 12/14

Performance considerations

Joining datasets will not come for free (especially when chains are involved).
: Biggest bottleneck: building and probing the join index.

Foreseen optimizations from our side:
• Tailor the join index to enable efficient multithreading;
• Ensure good distribution of hashed index values;
• Use on-disk data statistics to prevent unnecessary lookups.

N.B. The focus so far has been on the interface design – once this has been consolidated,
performance will be addressed.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 12/14

Performance considerations

Joining datasets will not come for free (especially when chains are involved).
: Biggest bottleneck: building and probing the join index.

Help (where possible) from the domain experts:
• Guarantees when events will be aligned;
• Guarantees when events will be ordered;
• Hints which files belong together.

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 12/14

Foreseen integration with RDataFrame

{
"samples": [

{
"identifier": "electrons",
"name": "myElectrons",
"files": ["electrons1.root",

"electrons2.root"],
"joinWith": {

"sample": "muons",
"joinOn": ["run", "event"],
"eventAlignment": "file"

},
},
{

"identifier": "muons",
"name": "myMuons",
"files": ["muons1.root",

"muons2.root"]
}

]
}

spec.json

df = ROOT.RDF.FromSpec("spec.json");
df_cuts = df.Filter("electrons.size >= 2 && muons.size >= 2")

.Filter("goodPts(electrons.pt, muons.pt)")

df_mass_e = df_filtered.Define(
"electron_mass",
"InvariantMass(electrons.pt, electrons.eta, \

electrons.phi, electrons.mass)"
)
hist_mass_e = df_mass_e.Histo1D("electron_mass")

df_mass_e = df_filtered.Define(
"muon_mass",
"InvariantMass(muons.pt, muons.eta, \

muons.phi, muons.mass)"
)
hist_mass_m = df_mass_m.Histo1D("muon_mass")

analysis.py

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 13/14

Discussion starters

• Does this approach address all (or at least most) of the (currently known) use
cases?

• Is this something that will mainly be used for analysis, or could it also have a
place in core software frameworks?

• Any particular requirements for sparse or chunked reading?
• Would it make sense to split the composition interface from the processor
interface?
: i.e., a seperate RNTuple[Base|Chain|Join]Composer and RNTupleProcessor.

• Can (and if so how) can we check that ntuples semantically belong together?
• At some point we will have to address the persistification of the RNTupleIndex.
This is still one of the biggest unknowns – any input/requirements/wishes are
welcome!

RNTupleProcessor F.W. de Geus | CERN EP-SFT & University of Twente (NL) | RNTuple Workshop 2024, CERN 14/14

