RNTuple Workshop 2024
Python AP

Vincenzo Eduardo Padulano (CERN, EP-SFT)
for the ROOT Team

02.12.2024

Understanding differences between C++ and Python

idiomatic behaviours
Providing a minimal Python API
Open questions

Context and goals

The ROOT team provides a public RNTuple API in C++, which
was the object of the HEP-CCE review

A public Python APl was so far not available, today we
present a first minimal implementation

By and large, using same classes and methods of the C++ API
Usability is favoured over performance for the Python API
For performant reading & writing of RNTuple in Python, we
encourage using RDataFrame

e Which also allows introducing more Pythonic features

vV v v Vv

C++ and Python APIs

RNTuple employs modern C++ constructs and patterns
Not everything applies 1:1 to an idiomatic Python usage
e.g. move semantics, access to pointees

In order to provide an idiomatic Python behaviour, the

interface needs to be adjusted accordingly

A minimal writing API

Recent APl changes introduced by

import ROOT

RNTupleWriter = ROOT.Experimental.RNTupleWriter
RNTupleModel = ROOT.Experimental.RNTupleModel

model = RNTupleModel.Create()
model .MakeField["int"] ("f")

with RNTupleWriter.Recreate(model, "nt , "ntuple_example.root") as writer:
entry = writer.CreateEntry()
entxy["T"] = 47
writer.Fill(entry)

https://github.com/root-project/root/pull/17104

A minimal writing API

Recent APl changes introduced by

impoxrt ROOT .
No default entry, MakeField returns None

RNTupleWriter = ROOT.Experiment] Th€ Uusage of std:ishared_pt does not apply
RNTupleModel = ROOT.Experimental well

model = RNTupleModel.Create()
model .MakeField[] ()

with RNTupleWriter.Recreate(model, 1t :) as writer:
entry = writer.CreateEntry()
entry|] =
writer.Fill(entry)

https://github.com/root-project/root/pull/17104

A minimal writing API

Recent APl changes introduced by

import ROOT RNTupleWriter works as a context
manager
dataset is automatically committed at
context exit

RNTupleWriter = ROOT.Experiment
RNTupleModel = ROOT.Experimenta

model = RNTupleModel.Create()
model .MakeField[] ()

with RNTupleWriter.Recreate(mydel, 1t :) as writer:
entry = writer.CreateEntry()
entry|] =
writer.Fill(entry)

https://github.com/root-project/root/pull/17104

A minimal writing API

Recent APl changes introduced by

impoxrt ROOT o
Entry must be requested for writing

RNTupleWriter = ROOT.Experiment contents

RNTupleModel = ROOT.Experimental filled with a dictionary syntax

model = RNTupleModel.Create()
model .MakeField[] ()

with RNTupleWriter.Recreate(model, "n :) as writer:
[entry = writer.CreateEntry(ﬂ

entry|] =
writer.FiII(entry)

https://github.com/root-project/root/pull/17104

A minimal writing API

Recent APl changes introduced b
with RNTupleWriter.Recreate(model, . ol |) as writer:
entry = writer.CreateEntry()
entxry[] =

writer.Fill(entry)
print(writer)
print(model)
print(entry)

<cppyy.gbl.ROOT.Experimental.RNTupleWriter object at @x558a0a5082a@ held by std::unique_ptr<ROOT: :Experimental::RNTupleWriter,default_delete<ROOT:
:Experimental: :RNTupleWriter> > at 0x558a@772c2a0@>

<cppyy.gbl.ROOT.Experimental.RNTupleModel object at @x(nil) held by std::unique_ptr<ROOT: :Experimental::RNTupleModel,default_delete<ROOT: :Experime
ntal: :RNTupleModel> > at @x558a07721950>

<cppyy.gbl.ROOT.Experimental.REntry object at @x558a@a47be50 held by std::unique_ptr<ROOT: :Experimental: :REntry,default_delete<ROOT: :Experimental:
:REntry> > at 0x558a@a3be7b0@>

After context state:

writer exists, but further modifications will fail
model is a nullptr, Python object will throw exception on use
entry is usable as a read-only dictionar

https://github.com/root-project/root/pull/17104

A minimal reading API
Similar concepts can be applied to the RNTupleReader API.

> Forbid default entry
» Must create entry and use LoadEntry (index, entry)
» Or use the RNTupleView

impoxrt ROOT Not supported yet, but a concrete idea of
the API

RNTupleReader = ROOT.Experimental.RNTupleReader

with RNTupleReader.Open("ntpl", "ntuple_example.root") as ntuple:
view = ntuple.GetView["int"]("T")
for i in ntuple.GetEntryRange():
val = view(1)

Some caveats

Some parts of the C++ API need further attention

» When returning references, such as from
e const RNTupleModel &RNTupleWriter::GetModel ()
e This can potentially lead to dangling references

» When a function takes a std::unique_ptr

e Potentially many ways to deal with this
e Our solution: automatic move, original variable becomes nullptr

11

Possible extensions

Open questions remaining:

» API for writing many entries at once (e.g. fill a field with
values from a numpy array)?
» Should we explore support for writing Python objects?

12

